This is my first post and I hope that you can help me with my problem.
In a nutshell, I run a regression to estimate the impact of workers' country of birth (reference: native workers) on wages. Besides, I also control for sex (female = 1) and education.
Code:
. reg log_sal_bonus i.Birth_region_gen_final_a sex i.education [aw=Pond_AB], r
(sum of wgt is 20,200,447.423307)
Linear regression Number of obs = 1,304,858
F(8, 1304849) = 33434.19
Prob > F = 0.0000
R-squared = 0.3156
Root MSE = .30553
-----------------------------------------------------------------------------------------------------
| Robust
log_sal_bonus | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------+----------------------------------------------------------------
Birth_region_gen_final_a |
First - 2-Developed | .024678 .001561 15.81 0.000 .0216185 .0277375
First - 3-Transition_&_Developing | -.0927497 .0012075 -76.81 0.000 -.0951164 -.0903829
Others | .0698681 .0051349 13.61 0.000 .059804 .0799323
Second - 2-Developed | -.0150958 .0012651 -11.93 0.000 -.0175754 -.0126162
Second - 3-Transition_&_Developing | -.1198456 .0018575 -64.52 0.000 -.1234863 -.1162048
|
sex | -.1625361 .0007542 -215.51 0.000 -.1640143 -.1610579
|
education |
2 | .0767518 .0007308 105.02 0.000 .0753195 .0781842
3 | .476564 .001068 446.23 0.000 .4744708 .4786572
|
_cons | 2.816732 .0006466 4356.09 0.000 2.815464 2.817999
-----------------------------------------------------------------------------------------------------Code:
reg log_sal_bonus i.Birth_region_gender i.education [aw=Pond_AB], r
(sum of wgt is 20,200,447.423307)
Linear regression Number of obs = 1,304,858
F(13, 1304844) = 20634.97
Prob > F = 0.0000
R-squared = 0.3159
Root MSE = .30546
---------------------------------------------------------------------------------------------------------
| Robust
log_sal_bonus | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------------------------------+----------------------------------------------------------------
Birth_region_gender |
Belgium - Natives women | -.1640748 .0008906 -184.22 0.000 -.1658204 -.1623292
First - Developed men | .0350259 .002058 17.02 0.000 .0309922 .0390595
First - Developed women | -.1566719 .0022561 -69.44 0.000 -.1610938 -.1522501
First - Others men | .0756946 .0064093 11.81 0.000 .0631327 .0882566
First - Others women | -.1058152 .0085449 -12.38 0.000 -.1225629 -.0890675
First - Transition_&_Developing men | -.1048025 .0014601 -71.78 0.000 -.1076643 -.1019407
First - Transition_&_Developing women | -.2272819 .0020083 -113.17 0.000 -.2312182 -.2233457
Second - Developed men | -.0141235 .0015387 -9.18 0.000 -.0171394 -.0111077
Second - Developed women | -.1813582 .0021551 -84.15 0.000 -.1855821 -.1771343
Second - Transition_&_Developing men | -.1293338 .002309 -56.01 0.000 -.1338593 -.1248083
Second - Transition_&_Developing women | -.2649113 .0030794 -86.03 0.000 -.2709469 -.2588758
|
education |
2 | .0768369 .0007309 105.12 0.000 .0754043 .0782695
3 | .4765397 .0010672 446.51 0.000 .474448 .4786315
|
_cons | 2.817192 .000665 4236.48 0.000 2.815889 2.818495
---------------------------------------------------------------------------------------------------------Code:
. reg log_sal_bonus i.Birth_region_gender i.education#i.sex [aw=Pond_AB], r
(sum of wgt is 20,200,447.423307)
note: 3.education#1.sex omitted because of collinearity
Linear regression Number of obs = 1,304,858
F(15, 1304842) = 18325.00
Prob > F = 0.0000
R-squared = 0.3172
Root MSE = .30518
---------------------------------------------------------------------------------------------------------
| Robust
log_sal_bonus | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------------------------------+----------------------------------------------------------------
Birth_region_gender |
Belgium - Natives women | .2846285 .001693 168.13 0.000 .2813103 .2879466
First - Developed men | .0345303 .0020482 16.86 0.000 .0305158 .0385448
First - Developed women | .2924861 .0027622 105.89 0.000 .2870724 .2978999
First - Others men | .0730843 .0063722 11.47 0.000 .0605951 .0855736
First - Others women | .3455405 .0086388 40.00 0.000 .3286088 .3624722
First - Transition_&_Developing men | -.1030127 .001467 -70.22 0.000 -.1058881 -.1001374
First - Transition_&_Developing women | .2184794 .0026264 83.19 0.000 .2133318 .223627
Second - Developed men | -.013088 .0015412 -8.49 0.000 -.0161087 -.0100673
Second - Developed women | .265587 .0026116 101.70 0.000 .2604684 .2707056
Second - Transition_&_Developing men | -.1282039 .0023131 -55.42 0.000 -.1327376 -.1236702
Second - Transition_&_Developing women | .1830853 .0033804 54.16 0.000 .1764599 .1897108
|
education#sex |
1 1 | -.4461616 .0017727 -251.68 0.000 -.4496361 -.4426872
2 0 | .0692601 .0008954 77.35 0.000 .0675052 .0710149
2 1 | -.3534031 .0017207 -205.38 0.000 -.3567757 -.3500306
3 0 | .4926451 .0013284 370.86 0.000 .4900414 .4952487
3 1 | 0 (omitted)
|
_cons | 2.816362 .0007338 3838.17 0.000 2.814924 2.8178
---------------------------------------------------------------------------------------------------------Or is it if enough to exclusively include control variables as in table 2?
Thank you so much for your help!
0 Response to Interactions between sex and country of birth : do I also have to include interactions between control variables and sex?
Post a Comment