I have panel data between 2014 and 2018 on multiple socioeconomic and demography factors for 108 local authorities in England. I am performing an IV regression where the dependent variable is rent. The control variables are unemployment (unemp), crime rate per 1000 inhabitants (crime), and the number of dwellings per 1000 inhabitants (dwelling). The endogenous variable is refugees (ref) and the instrument I'm using is the foreign-born non-EU population, denoted as "iv". I am investigating the effect that refugees have on rental prices in England. Below is an example of the data:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int(id year) str28 city double(ref rent unemp iv dwelling crime house) long citydummy float(unemp_L1 dwelling_L1 crime_L1 v2hat) 1 2014 "Birmingham" . . 5.2151714077315825 . .3900346462436178 272.1134208606856 . 7 . . . . 1 2015 "Birmingham" 8.205689277899343e-06 .020425134615904117 3.99517686340653 -.0013776440554339898 .3883094978550781 274.25081394949444 .06570433033843326 7 5.215171 .39003465 272.11343 -.00005961159 1 2016 "Birmingham" .00004067487756861852 .01887119338140497 3.971597709354186 .028752619010172335 .3868193048272802 296.34022638106944 -.010791363051775527 7 3.995177 .3883095 274.25082 -.000034011697 1 2017 "Birmingham" .00016101071794679132 .015020326395324801 3.7171110718700335 .006443112229837433 .38335687797986934 336.0215433515804 -.0062825779391504355 7 3.971598 .3868193 296.34024 .00008426196 1 2018 "Birmingham" .00010330213667667315 .002453647667271852 3.572528920367716 .006161045382306198 .383893248973666 366.4554456488441 .02468309788167211 7 3.717111 .3833569 336.0215 .000021826463 2 2014 "Leeds" . . 4.333027883230789 . .44186411834009687 306.98651655975914 . 54 . . . . 2 2015 "Leeds" .00006545359340227778 -.1030368951604701 3.0899861080456486 -.01785574028014138 .44080339638809185 341.878399958454 .0664721755373554 54 4.333028 .4418641 306.9865 -4.05524e-06 2 2016 "Leeds" .0001051633927528141 -.04562566646438215 2.146799982517078 .005637277176947146 .4396312131862368 411.67653509053844 -.01794009425056764 54 3.089986 .4408034 341.8784 .00002501094 2 2017 "Leeds" .00010412622669693612 .05559640310545699 2.3117193955811675 -.01352998192574386 .4403889308233936 469.63281977401346 -.013819021423820743 54 2.1468 .4396312 411.6765 .000011424105 2 2018 "Leeds" .00009962105682614976 .0074731536401340115 1.702625092119641 .008780702124099739 .44103072348860256 513.3236766537063 .021721356337354614 54 2.3117194 .4403889 469.6328 1.5545903e-06 3 2014 "Bradford" . . 3.868765408685758 . .3974966812061445 299.2983121562678 . 11 . . . . 3 2015 "Bradford" .00019154181680257917 .016756586393507078 4.493397726114193 .023258107339275556 .3978544969848924 330.17599770421356 .05891719769275028 11 3.868765 .3974967 299.2983 .0001127746 3 2016 "Bradford" .00009817507636888152 -.002603171521629477 3.0034088690663907 -.023159878111866723 .3972759081557568 404.0241924584403 -.023879145249947165 11 4.4933977 .3978545 330.176 .000019693 3 2017 "Bradford" .0002759381898454746 .020401143243884423 2.698296700207994 .016822843927858117 .3993666498023123 480.16939307062415 -.016562414005032444 11 3.003409 .3972759 404.0242 .0001811274 3 2018 "Bradford" .00018550789813929957 .009039568161282041 1.7724310477679497 -.011471508610189817 .40066270264017595 542.0933716675964 .0046664641861768885 11 2.698297 .39936665 480.1694 .00008030644 4 2014 "Liverpool" . . 2.5557011795543905 . .20313611683205393 160.74237034263248 . 57 . . . . 4 2015 "Liverpool" 0 .05901022289999158 1.1759880450776294 -.00011795543905635649 .1566788950301598 124.12051869677579 .06559698632374555 57 2.555701 .2031361 160.74237 2.210697e-06 4 2016 "Liverpool" .000014341317622897922 .012283895142308765 1.1552952100176932 -.0005557260578872944 .15726277760068005 132.59365914084546 -.0359936897632549 57 1.1759881 .1566789 124.12052 .00002507625 4 2017 "Liverpool" .00004278871148213678 .0008642679109081008 .9759616404642183 -.004519914222896382 .15841696193042384 149.25565244450104 -.015389959245511342 57 1.1552953 .15726277 132.59366 .0000523487 4 2018 "Liverpool" .000023338213141535653 -.003467439432537578 .6972101032082229 .008919440731546898 .15968928373986316 161.7295036075341 .02784955510112308 57 .9759616 .15841696 149.25565 .000029777464
I would be extremely grateful if someone could help me with this!
0 Response to How to perform firstage regression and overidentification tests
Post a Comment