I m running the command xtlogit, re vce(robust) for my model since my dependent variable is a binary variable. However, I am not sure everthing is correct with my model because the coefficient of the variable "HDI" which represents the Human Development Index of the firm's country is very high (7.134983), is it normal to get such a high coefficient? Could you please check whether I made something wrong?
Code:
. xtlogit GRIDUMMY EF HDI WGI MARKETBANK TRADE LISTEDCOMP pdi i.SIZECODE i.INDUSTRYCODE i.YEAR, re vce(robust) Fitting comparison model: Iteration 0: log pseudolikelihood = -6698.6528 Iteration 1: log pseudolikelihood = -5516.0771 Iteration 2: log pseudolikelihood = -5464.7453 Iteration 3: log pseudolikelihood = -5464.424 Iteration 4: log pseudolikelihood = -5464.424 Fitting full model: tau = 0.0 log pseudolikelihood = -5464.424 tau = 0.1 log pseudolikelihood = -5311.8319 tau = 0.2 log pseudolikelihood = -5166.1068 tau = 0.3 log pseudolikelihood = -5026.4973 tau = 0.4 log pseudolikelihood = -4892.4275 tau = 0.5 log pseudolikelihood = -4763.6494 tau = 0.6 log pseudolikelihood = -4640.6184 tau = 0.7 log pseudolikelihood = -4525.5951 tau = 0.8 log pseudolikelihood = -4426.0644 Iteration 0: log pseudolikelihood = -4525.463 Iteration 1: log pseudolikelihood = -4260.4518 Iteration 2: log pseudolikelihood = -4202.5863 Iteration 3: log pseudolikelihood = -4189.3637 Iteration 4: log pseudolikelihood = -4189.2971 Iteration 5: log pseudolikelihood = -4189.2613 Iteration 6: log pseudolikelihood = -4189.2613 (backed up) Iteration 7: log pseudolikelihood = -4189.2504 Iteration 8: log pseudolikelihood = -4189.2504 Calculating robust standard errors: Random-effects logistic regression Number of obs = 10,622 Group variable: ID Number of groups = 3,457 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 3.1 max = 7 Integration method: mvaghermite Integration pts. = 12 Wald chi2(51) = 595.56 Log pseudolikelihood = -4189.2504 Prob > chi2 = 0.0000 (Std. Err. adjusted for 3,457 clusters in ID) ------------------------------------------------------------------------------ | Robust GRIDUMMY | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- EF | -.794144 .0905921 -8.77 0.000 -.9717012 -.6165867 HDI | 7.134983 2.103149 3.39 0.001 3.012887 11.25708 WGI | .0751934 .0091546 8.21 0.000 .0572507 .093136 MARKETBANK | 1.51871 .2081931 7.29 0.000 1.110659 1.926761 TRADE | -.0213453 .0029042 -7.35 0.000 -.0270375 -.0156531 LISTEDCOMP | -.0008253 .0000774 -10.66 0.000 -.000977 -.0006735 pdi | -.0181224 .0094897 -1.91 0.056 -.0367219 .000477 | SIZECODE | 2 | .0560961 .2327905 0.24 0.810 -.4001649 .5123572 3 | -.7657774 .2692277 -2.84 0.004 -1.293454 -.2381008 | INDUSTRYCODE | 2 | 1.093076 .6323171 1.73 0.084 -.1462424 2.332395 3 | 1.745545 .8048255 2.17 0.030 .1681159 3.322974 4 | 3.737957 .8479716 4.41 0.000 2.075963 5.39995 5 | .1684474 .8915327 0.19 0.850 -1.578925 1.915819 6 | .8330704 .5392894 1.54 0.122 -.2239174 1.890058 7 | .8476553 .4985822 1.70 0.089 -.1295478 1.824858 8 | 1.616773 .6954972 2.32 0.020 .253624 2.979923 9 | 2.094374 .8336663 2.51 0.012 .4604185 3.72833 10 | 1.820881 .8298653 2.19 0.028 .1943746 3.447387 11 | .8696175 .6657727 1.31 0.191 -.435273 2.174508 12 | 1.660832 .5793592 2.87 0.004 .5253084 2.796355 13 | 1.097648 .6655542 1.65 0.099 -.2068142 2.40211 14 | 1.659405 .6085067 2.73 0.006 .4667541 2.852057 15 | 1.571707 .58902 2.67 0.008 .4172489 2.726165 16 | -.4546692 .7386691 -0.62 0.538 -1.902434 .9930958 17 | 1.141251 .828004 1.38 0.168 -.4816075 2.764109 18 | 2.761143 .5877891 4.70 0.000 1.609097 3.913188 19 | -.6074114 .4955779 -1.23 0.220 -1.578726 .3639034 20 | .1029561 .7489992 0.14 0.891 -1.365055 1.570968 21 | 1.863303 .522451 3.57 0.000 .8393178 2.887288 22 | .6279565 .5842609 1.07 0.282 -.5171739 1.773087 23 | .4604285 .7443967 0.62 0.536 -.9985623 1.919419 24 | -.3339932 .6555017 -0.51 0.610 -1.618753 .9507665 25 | 1.337136 .6721295 1.99 0.047 .0197861 2.654485 26 | 1.878334 .6502785 2.89 0.004 .6038116 3.152856 27 | -.573694 1.223187 -0.47 0.639 -2.971096 1.823708 28 | .3236552 .7054683 0.46 0.646 -1.059037 1.706348 29 | .1539578 1.006267 0.15 0.878 -1.81829 2.126206 30 | 1.959095 .6823053 2.87 0.004 .621801 3.296389 31 | .3510582 .6470255 0.54 0.587 -.9170885 1.619205 32 | 1.460112 .9286049 1.57 0.116 -.3599201 3.280144 33 | 2.15393 1.982011 1.09 0.277 -1.730741 6.038601 34 | -.7165465 .8305085 -0.86 0.388 -2.344313 .9112203 35 | 1.198915 .9832089 1.22 0.223 -.7281388 3.125969 36 | 2.259782 .9301801 2.43 0.015 .4366628 4.082902 37 | .1138347 1.895794 0.06 0.952 -3.601854 3.829523 | YEAR | 2011 | .0965435 .2068523 0.47 0.641 -.3088796 .5019666 2012 | .2651756 .2275511 1.17 0.244 -.1808164 .7111677 2013 | .6161574 .237699 2.59 0.010 .1502759 1.082039 2014 | .4201237 .2458367 1.71 0.087 -.0617073 .9019548 2015 | .4487022 .251094 1.79 0.074 -.0434331 .9408375 2016 | -.2402657 .2521466 -0.95 0.341 -.7344639 .2539325 | _cons | -4.033084 1.705101 -2.37 0.018 -7.375021 -.6911467 -------------+---------------------------------------------------------------- /lnsig2u | 2.622093 .0837984 2.457851 2.786335 -------------+---------------------------------------------------------------- sigma_u | 3.710054 .1554483 3.417556 4.027587 rho | .8070953 .0130468 .7802294 .8313867 ------------------------------------------------------------------------------
0 Response to High coefficients with xtlogit
Post a Comment