Dear All,

I m running the command xtlogit, re vce(robust) for my model since my dependent variable is a binary variable. However, I am not sure everthing is correct with my model because the coefficient of the variable "HDI" which represents the Human Development Index of the firm's country is very high (7.134983), is it normal to get such a high coefficient? Could you please check whether I made something wrong?

Code:
. xtlogit GRIDUMMY EF HDI WGI MARKETBANK TRADE LISTEDCOMP pdi i.SIZECODE i.INDUSTRYCODE i.YEAR, re vce(robust)

Fitting comparison model:

Iteration 0:   log pseudolikelihood = -6698.6528  
Iteration 1:   log pseudolikelihood = -5516.0771  
Iteration 2:   log pseudolikelihood = -5464.7453  
Iteration 3:   log pseudolikelihood =  -5464.424  
Iteration 4:   log pseudolikelihood =  -5464.424  

Fitting full model:

tau =  0.0     log pseudolikelihood =  -5464.424
tau =  0.1     log pseudolikelihood = -5311.8319
tau =  0.2     log pseudolikelihood = -5166.1068
tau =  0.3     log pseudolikelihood = -5026.4973
tau =  0.4     log pseudolikelihood = -4892.4275
tau =  0.5     log pseudolikelihood = -4763.6494
tau =  0.6     log pseudolikelihood = -4640.6184
tau =  0.7     log pseudolikelihood = -4525.5951
tau =  0.8     log pseudolikelihood = -4426.0644

Iteration 0:   log pseudolikelihood =  -4525.463  
Iteration 1:   log pseudolikelihood = -4260.4518  
Iteration 2:   log pseudolikelihood = -4202.5863  
Iteration 3:   log pseudolikelihood = -4189.3637  
Iteration 4:   log pseudolikelihood = -4189.2971  
Iteration 5:   log pseudolikelihood = -4189.2613  
Iteration 6:   log pseudolikelihood = -4189.2613  (backed up)
Iteration 7:   log pseudolikelihood = -4189.2504  
Iteration 8:   log pseudolikelihood = -4189.2504  

Calculating robust standard errors:

Random-effects logistic regression              Number of obs     =     10,622
Group variable: ID                              Number of groups  =      3,457

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =          1
                                                              avg =        3.1
                                                              max =          7

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(51)     =     595.56
Log pseudolikelihood  = -4189.2504              Prob > chi2       =     0.0000

                                 (Std. Err. adjusted for 3,457 clusters in ID)
------------------------------------------------------------------------------
             |               Robust
    GRIDUMMY |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          EF |   -.794144   .0905921    -8.77   0.000    -.9717012   -.6165867
         HDI |   7.134983   2.103149     3.39   0.001     3.012887    11.25708
         WGI |   .0751934   .0091546     8.21   0.000     .0572507     .093136
  MARKETBANK |    1.51871   .2081931     7.29   0.000     1.110659    1.926761
       TRADE |  -.0213453   .0029042    -7.35   0.000    -.0270375   -.0156531
  LISTEDCOMP |  -.0008253   .0000774   -10.66   0.000     -.000977   -.0006735
         pdi |  -.0181224   .0094897    -1.91   0.056    -.0367219     .000477
             |
    SIZECODE |
          2  |   .0560961   .2327905     0.24   0.810    -.4001649    .5123572
          3  |  -.7657774   .2692277    -2.84   0.004    -1.293454   -.2381008
             |
INDUSTRYCODE |
          2  |   1.093076   .6323171     1.73   0.084    -.1462424    2.332395
          3  |   1.745545   .8048255     2.17   0.030     .1681159    3.322974
          4  |   3.737957   .8479716     4.41   0.000     2.075963     5.39995
          5  |   .1684474   .8915327     0.19   0.850    -1.578925    1.915819
          6  |   .8330704   .5392894     1.54   0.122    -.2239174    1.890058
          7  |   .8476553   .4985822     1.70   0.089    -.1295478    1.824858
          8  |   1.616773   .6954972     2.32   0.020      .253624    2.979923
          9  |   2.094374   .8336663     2.51   0.012     .4604185     3.72833
         10  |   1.820881   .8298653     2.19   0.028     .1943746    3.447387
         11  |   .8696175   .6657727     1.31   0.191     -.435273    2.174508
         12  |   1.660832   .5793592     2.87   0.004     .5253084    2.796355
         13  |   1.097648   .6655542     1.65   0.099    -.2068142     2.40211
         14  |   1.659405   .6085067     2.73   0.006     .4667541    2.852057
         15  |   1.571707     .58902     2.67   0.008     .4172489    2.726165
         16  |  -.4546692   .7386691    -0.62   0.538    -1.902434    .9930958
         17  |   1.141251    .828004     1.38   0.168    -.4816075    2.764109
         18  |   2.761143   .5877891     4.70   0.000     1.609097    3.913188
         19  |  -.6074114   .4955779    -1.23   0.220    -1.578726    .3639034
         20  |   .1029561   .7489992     0.14   0.891    -1.365055    1.570968
         21  |   1.863303    .522451     3.57   0.000     .8393178    2.887288
         22  |   .6279565   .5842609     1.07   0.282    -.5171739    1.773087
         23  |   .4604285   .7443967     0.62   0.536    -.9985623    1.919419
         24  |  -.3339932   .6555017    -0.51   0.610    -1.618753    .9507665
         25  |   1.337136   .6721295     1.99   0.047     .0197861    2.654485
         26  |   1.878334   .6502785     2.89   0.004     .6038116    3.152856
         27  |   -.573694   1.223187    -0.47   0.639    -2.971096    1.823708
         28  |   .3236552   .7054683     0.46   0.646    -1.059037    1.706348
         29  |   .1539578   1.006267     0.15   0.878     -1.81829    2.126206
         30  |   1.959095   .6823053     2.87   0.004      .621801    3.296389
         31  |   .3510582   .6470255     0.54   0.587    -.9170885    1.619205
         32  |   1.460112   .9286049     1.57   0.116    -.3599201    3.280144
         33  |    2.15393   1.982011     1.09   0.277    -1.730741    6.038601
         34  |  -.7165465   .8305085    -0.86   0.388    -2.344313    .9112203
         35  |   1.198915   .9832089     1.22   0.223    -.7281388    3.125969
         36  |   2.259782   .9301801     2.43   0.015     .4366628    4.082902
         37  |   .1138347   1.895794     0.06   0.952    -3.601854    3.829523
             |
        YEAR |
       2011  |   .0965435   .2068523     0.47   0.641    -.3088796    .5019666
       2012  |   .2651756   .2275511     1.17   0.244    -.1808164    .7111677
       2013  |   .6161574    .237699     2.59   0.010     .1502759    1.082039
       2014  |   .4201237   .2458367     1.71   0.087    -.0617073    .9019548
       2015  |   .4487022    .251094     1.79   0.074    -.0434331    .9408375
       2016  |  -.2402657   .2521466    -0.95   0.341    -.7344639    .2539325
             |
       _cons |  -4.033084   1.705101    -2.37   0.018    -7.375021   -.6911467
-------------+----------------------------------------------------------------
    /lnsig2u |   2.622093   .0837984                      2.457851    2.786335
-------------+----------------------------------------------------------------
     sigma_u |   3.710054   .1554483                      3.417556    4.027587
         rho |   .8070953   .0130468                      .7802294    .8313867
------------------------------------------------------------------------------