I would be most grateful if you could help with a problem I am experiencing using Stata.
Essentially I am obtaining substantially different results when using mixed effects model as compared with repeated measures ANOVA and I am not sure why this is happening.
Experiment:
- Two groups of subjects (healthy subjects – HC; diseased subjects – DS) performed an experimental task.
- There is one dependent variable “DV”.
- Each subject performed four different experimental conditions, defined by a combination of 2 independent variables:
- Difficulty (easy 0, difficult 1)
- Distraction (without distraction 0, with distraction 1)
I am interested in measuring the effect of “group”, “difficulty” and “distraction” along with their respective interactions on the dependent variable (DV).
I previously used mixed effects model ("mixed command") but in the field I am working reviewers prefer to see ANOVA instead of mixed effects model.
Problem:
groupXdistraction is significant when using mixed but now when using anova, and this makes a BIG difference in terms of result interpretation
do you think I am misusing ANOVA command? do you see any obvious reason for this to happen?
I am using the following commands:
Code:
mixed dv i.group##i.difficult##i.distraction ||id2:, stddev covar(unstr)
Code:
anova dv i.group / id2|i.group i.difficult i.distraction i.group#i.difficult i.group#i.distraction i.difficult#i.distraction i.group#i.difficult#i.distraction, repeated(difficult distraction)
Please see output below:
Code:
mixed dv i.group i.difficult i.distraction i.group#i.difficult i.group#i.distraction i.difficult#i.distraction i.group#i.difficult#i > .distraction ||id2:, stddev covar(unstr) Note: single-variable random-effects specification in id2 equation; covariance structure set to identity Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = -707.02709 Iteration 1: log likelihood = -707.02709 Computing standard errors: Mixed-effects ML regression Number of obs = 168 Group variable: id2 Number of groups = 42 Obs per group: min = 4 avg = 4.0 max = 4 Wald chi2(7) = 22.57 Log likelihood = -707.02709 Prob > chi2 = 0.0020 --------------------------------------------------------------------------------------------- dv | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------------------+---------------------------------------------------------------- 1.group | 2.708238 7.587663 0.36 0.721 -12.16331 17.57978 1.difficult | 1.608696 3.428798 0.47 0.639 -5.111626 8.329017 1.distraction | -3.217391 3.428798 -0.94 0.348 -9.937713 3.50293 | group#difficult | 1 1 | 8.812357 5.097882 1.73 0.084 -1.179309 18.80402 | group#distraction | 1 1 | 11.08581 5.097882 2.17 0.030 1.094147 21.07748 | difficult#distraction | 1 1 | 7.173913 4.849053 1.48 0.139 -2.330057 16.67788 | group#difficult#distraction | 1 1 1 | -12.12128 7.209494 -1.68 0.093 -26.25163 2.009068 | _cons | 47.73913 5.103407 9.35 0.000 37.73664 57.74162 --------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ id2: Identity | sd(_cons) | 21.53666 2.523021 17.11828 27.09547 -----------------------------+------------------------------------------------ sd(Residual) | 11.62762 .7324712 10.27709 13.15563 ------------------------------------------------------------------------------ LR test vs. linear regression: chibar2(01) = 137.12 Prob >= chibar2 = 0.0000 . end of do-file . do "C:\Users\TIAGOT~1\AppData\Local\Temp\STD00000000.tmp" . anova dv i.group / id2|i.group i.difficult i.distraction i.group#i.difficult i.group#i.distraction i.difficult#i.distraction i.group > #i.difficult#i.distraction, repeated(difficult distraction) Number of obs = 168 R-squared = 0.8412 Root MSE = 11.9148 Adj R-squared = 0.7790 Source | Partial SS df MS F Prob > F ----------------------+---------------------------------------------------- Model | 90247.9303 47 1920.16873 13.53 0.0000 | group | 3857.21892 1 3857.21892 1.85 0.1819 id2|group | 83601.4894 40 2090.03724 ----------------------+---------------------------------------------------- difficult | 1797.30807 1 1797.30807 12.66 0.0005 distraction | 345.720878 1 345.720878 2.44 0.1213 group#difficult | 78.7842568 1 78.7842568 0.55 0.4578 group#distraction | 262.744688 1 262.744688 1.85 0.1762 difficult#distraction | 12.8954043 1 12.8954043 0.09 0.7636 group#difficult# | distraction | 382.181119 1 382.181119 2.69 0.1035 | Residual | 17035.403 120 141.961692 ----------------------+---------------------------------------------------- Total | 107283.333 167 642.41517 Between-subjects error term: id2|group Levels: 42 (40 df) Lowest b.s.e. variable: id2 Covariance pooled over: group (for repeated variables) Repeated variable: difficult Huynh-Feldt epsilon = 1.0256 *Huynh-Feldt epsilon reset to 1.0000 Greenhouse-Geisser epsilon = 1.0000 Box's conservative epsilon = 1.0000 ------------ Prob > F ------------ Source | df F Regular H-F G-G Box ----------------------+---------------------------------------------------- difficult | 1 12.66 0.0005 0.0005 0.0005 0.0005 group#difficult | 1 0.55 0.4578 0.4578 0.4578 0.4578 Residual | 120 --------------------------------------------------------------------------- Repeated variable: distraction Huynh-Feldt epsilon = 1.0256 *Huynh-Feldt epsilon reset to 1.0000 Greenhouse-Geisser epsilon = 1.0000 Box's conservative epsilon = 1.0000 ------------ Prob > F ------------ Source | df F Regular H-F G-G Box ----------------------+---------------------------------------------------- distraction | 1 2.44 0.1213 0.1213 0.1213 0.1213 group#distraction | 1 1.85 0.1762 0.1762 0.1762 0.1762 Residual | 120 --------------------------------------------------------------------------- Repeated variables: difficult#distraction Huynh-Feldt epsilon = 1.0256 *Huynh-Feldt epsilon reset to 1.0000 Greenhouse-Geisser epsilon = 1.0000 Box's conservative epsilon = 1.0000 ------------ Prob > F ------------ Source | df F Regular H-F G-G Box ----------------------+---------------------------------------------------- difficult#distraction | 1 0.09 0.7636 0.7636 0.7636 0.7636 group#difficult# | distraction | 1 2.69 0.1035 0.1035 0.1035 0.1035 Residual | 120 ---------------------------------------------------------------------------
Many thanks
Jaime
0 Response to Different results in "Mixed" and "ANOVA"
Post a Comment