Hello

I would be most grateful if you could help with a problem I am experiencing using Stata.
Essentially I am obtaining substantially different results when using mixed effects model as compared with repeated measures ANOVA and I am not sure why this is happening.

Experiment:
- Two groups of subjects (healthy subjects – HC; diseased subjects – DS) performed an experimental task.
- There is one dependent variable “DV”.
- Each subject performed four different experimental conditions, defined by a combination of 2 independent variables:
  • Difficulty (easy 0, difficult 1)
  • Distraction (without distraction 0, with distraction 1)
- The four conditions were: Easy without distraction; Easy with distraction; Difficult without distraction; Difficult with distraction

I am interested in measuring the effect of “group”, “difficulty” and “distraction” along with their respective interactions on the dependent variable (DV).

I previously used mixed effects model ("mixed command") but in the field I am working reviewers prefer to see ANOVA instead of mixed effects model.

Problem:
groupXdistraction is significant when using mixed but now when using anova, and this makes a BIG difference in terms of result interpretation
do you think I am misusing ANOVA command? do you see any obvious reason for this to happen?


I am using the following commands:

Code:
mixed dv i.group##i.difficult##i.distraction ||id2:, stddev covar(unstr)


Code:
anova dv i.group / id2|i.group i.difficult i.distraction i.group#i.difficult i.group#i.distraction i.difficult#i.distraction i.group#i.difficult#i.distraction, repeated(difficult distraction)



Please see output below:

Code:
 mixed dv i.group i.difficult i.distraction i.group#i.difficult i.group#i.distraction i.difficult#i.distraction i.group#i.difficult#i
> .distraction ||id2:, stddev covar(unstr)
Note: single-variable random-effects specification in id2 equation; covariance structure set to identity

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log likelihood = -707.02709  
Iteration 1:   log likelihood = -707.02709  

Computing standard errors:

Mixed-effects ML regression                     Number of obs      =       168
Group variable: id2                             Number of groups   =        42

                                                Obs per group: min =         4
                                                               avg =       4.0
                                                               max =         4


                                                Wald chi2(7)       =     22.57
Log likelihood = -707.02709                     Prob > chi2        =    0.0020

---------------------------------------------------------------------------------------------
                         dv |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------------------+----------------------------------------------------------------
                    1.group |   2.708238   7.587663     0.36   0.721    -12.16331    17.57978
                1.difficult |   1.608696   3.428798     0.47   0.639    -5.111626    8.329017
              1.distraction |  -3.217391   3.428798    -0.94   0.348    -9.937713     3.50293
                            |
            group#difficult |
                       1 1  |   8.812357   5.097882     1.73   0.084    -1.179309    18.80402
                            |
          group#distraction |
                       1 1  |   11.08581   5.097882     2.17   0.030     1.094147    21.07748
                            |
      difficult#distraction |
                       1 1  |   7.173913   4.849053     1.48   0.139    -2.330057    16.67788
                            |
group#difficult#distraction |
                     1 1 1  |  -12.12128   7.209494    -1.68   0.093    -26.25163    2.009068
                            |
                      _cons |   47.73913   5.103407     9.35   0.000     37.73664    57.74162
---------------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id2: Identity                |
                   sd(_cons) |   21.53666   2.523021      17.11828    27.09547
-----------------------------+------------------------------------------------
                sd(Residual) |   11.62762   .7324712      10.27709    13.15563
------------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01) =   137.12 Prob >= chibar2 = 0.0000

.
end of do-file

. do "C:\Users\TIAGOT~1\AppData\Local\Temp\STD00000000.tmp"

. anova dv i.group / id2|i.group i.difficult i.distraction i.group#i.difficult i.group#i.distraction i.difficult#i.distraction i.group
> #i.difficult#i.distraction, repeated(difficult distraction)

                           Number of obs =     168     R-squared     =  0.8412
                           Root MSE      = 11.9148     Adj R-squared =  0.7790

                  Source |  Partial SS    df       MS           F     Prob > F
   ----------------------+----------------------------------------------------
                   Model |  90247.9303    47  1920.16873      13.53     0.0000
                         |
                   group |  3857.21892     1  3857.21892       1.85     0.1819
               id2|group |  83601.4894    40  2090.03724   
   ----------------------+----------------------------------------------------
               difficult |  1797.30807     1  1797.30807      12.66     0.0005
             distraction |  345.720878     1  345.720878       2.44     0.1213
         group#difficult |  78.7842568     1  78.7842568       0.55     0.4578
       group#distraction |  262.744688     1  262.744688       1.85     0.1762
   difficult#distraction |  12.8954043     1  12.8954043       0.09     0.7636
        group#difficult# |
             distraction |  382.181119     1  382.181119       2.69     0.1035
                         |
                Residual |   17035.403   120  141.961692   
   ----------------------+----------------------------------------------------
                   Total |  107283.333   167   642.41517   


Between-subjects error term:  id2|group
                     Levels:  42        (40 df)
     Lowest b.s.e. variable:  id2
     Covariance pooled over:  group     (for repeated variables)

Repeated variable: difficult
                                          Huynh-Feldt epsilon        =  1.0256
                                          *Huynh-Feldt epsilon reset to 1.0000
                                          Greenhouse-Geisser epsilon =  1.0000
                                          Box's conservative epsilon =  1.0000

                                            ------------ Prob > F ------------
                  Source |     df      F    Regular    H-F      G-G      Box
   ----------------------+----------------------------------------------------
               difficult |      1    12.66   0.0005   0.0005   0.0005   0.0005
         group#difficult |      1     0.55   0.4578   0.4578   0.4578   0.4578
                Residual |    120
   ---------------------------------------------------------------------------

Repeated variable: distraction
                                          Huynh-Feldt epsilon        =  1.0256
                                          *Huynh-Feldt epsilon reset to 1.0000
                                          Greenhouse-Geisser epsilon =  1.0000
                                          Box's conservative epsilon =  1.0000

                                            ------------ Prob > F ------------
                  Source |     df      F    Regular    H-F      G-G      Box
   ----------------------+----------------------------------------------------
             distraction |      1     2.44   0.1213   0.1213   0.1213   0.1213
       group#distraction |      1     1.85   0.1762   0.1762   0.1762   0.1762
                Residual |    120
   ---------------------------------------------------------------------------

Repeated variables: difficult#distraction
                                          Huynh-Feldt epsilon        =  1.0256
                                          *Huynh-Feldt epsilon reset to 1.0000
                                          Greenhouse-Geisser epsilon =  1.0000
                                          Box's conservative epsilon =  1.0000

                                            ------------ Prob > F ------------
                  Source |     df      F    Regular    H-F      G-G      Box
   ----------------------+----------------------------------------------------
   difficult#distraction |      1     0.09   0.7636   0.7636   0.7636   0.7636
        group#difficult# |
             distraction |      1     2.69   0.1035   0.1035   0.1035   0.1035
                Residual |    120
   ---------------------------------------------------------------------------


Many thanks

Jaime