Code:
cls clear * python: import requests url='https://comtrade.un.org/api/get?max=100000&type=C&freq=M&px=S2&ps=201001&r=all&p=156&rg=2&cc=9101' un_data=requests.get(url) print(un_data.content) end
Code:
* Example generated by -dataex-. For more info, type help dataex clear input long(yr period) str24 rtTitle long TradeValue 2017 201706 "Canada" 147650 2017 201703 "China, Hong Kong SAR" 3749878 2017 201710 "Canada" 57796 2017 201708 "China, Hong Kong SAR" 2637734 2017 201707 "Canada" 250106 2017 201712 "China, Hong Kong SAR" 2283290 2017 201712 "Belgium" 83828 2017 201704 "Rep. of Korea" 78321 2017 201707 "Belgium" 105535 2017 201710 "ASEAN" 255697 2017 201711 "ASEAN" 809781 2017 201709 "Canada" 237649 2017 201712 "Canada" 19262 2017 201706 "ASEAN" 351560 2017 201701 "Poland" 186 2017 201705 "China, Hong Kong SAR" 2585817 2017 201711 "Belgium" 54809 2017 201711 "South Africa" 0 2017 201706 "Japan" 23631 2017 201708 "EU" 3992007 2017 201706 "United Kingdom" 1769918 2017 201708 "United Kingdom" 2754432 2017 201709 "United Kingdom" 2757139 2017 201705 "Japan" 31784 2017 201702 "EU" 4471396 2017 201701 "Denmark" 62459 2017 201702 "Japan" 26842 2017 201705 "United Kingdom" 2497820 2017 201706 "EU" 3280962 2017 201708 "Jordan" 1352 2017 201704 "Jordan" 1127 2017 201709 "EU" 4515770 2017 201703 "United Kingdom" 550694 2017 201706 "Denmark" 157 2017 201705 "Switzerland" 24861018 2017 201705 "Spain" 3910 2017 201702 "Spain" 7367 2017 201705 "Portugal" 554711 2017 201707 "Spain" 2256 2017 201705 "Indonesia" 4546 2017 201709 "Portugal" 251010 2017 201711 "Spain" 61724 2017 201702 "Portugal" 345734 2017 201709 "Switzerland" 18864650 2017 201704 "Switzerland" 29645183 2017 201707 "Portugal" 519235 2017 201708 "Spain" 55665 2017 201704 "Portugal" 214740 2017 201710 "Switzerland" 25679499 2017 201712 "Switzerland" 39337860 2017 201708 "Portugal" 13542 2017 201708 "Malaysia" 3501 2017 201710 "United States of America" 295324 2017 201703 "United States of America" 95075 2017 201711 "France" 272189 2017 201703 "Malaysia" 6931 2017 201705 "United States of America" 123130 2017 201706 "Malta" 8422 2017 201710 "United Arab Emirates" 15488 2017 201710 "Thailand" 62043 2017 201702 "France" 136805 2017 201701 "United Arab Emirates" 1715 2017 201709 "France" 368213 2017 201707 "United States of America" 156303 2017 201705 "France" 329651 2017 201704 "United States of America" 48700 2017 201701 "Thailand" 7 2017 201707 "Thailand" 10563 2017 201710 "United Kingdom" 1535513 2017 201711 "United Kingdom" 1736628 2017 201703 "Japan" 23308 2017 201704 "South Africa" 30253 2017 201704 "Japan" 3089 2017 201702 "Denmark" 4755 2017 201702 "Norway" 6483 2017 201710 "Japan" 10429 2017 201707 "Denmark" 319572 2017 201712 "EU" 4755897 2017 201711 "Honduras" 9113 2017 201707 "Japan" 16469 2017 201706 "South Africa" 102 2017 201704 "United Kingdom" 837483 2017 201709 "Japan" 19201 2017 201701 "EU" 2397025 2017 201708 "Denmark" 41270 2017 201711 "EU" 5367992 2017 201701 "United Kingdom" 1426777 2017 201707 "United Kingdom" 3199253 2017 201703 "EU" 3258888 2017 201710 "EU" 3521723 2017 201704 "EU" 2048226 2017 201705 "Denmark" 201524 2017 201712 "United Kingdom" 2474348 2017 201709 "Norway" 2554 2017 201707 "EU" 5736215 2017 201702 "United Kingdom" 2473939 2017 201705 "EU" 4782490 2017 201707 "Italy" 543315 2017 201710 "Croatia" 21260 2017 201705 "Singapore" 260451 end
0 Response to Python Dictionary (I think) to dataframe
Post a Comment