I am trying to interpret the results of an Oaxaca-Blinder Decomposition. I am using the popular Oaxaca command. For my project I am just interested in the results of a two-way decomposition (i.e. I don't want the interaction terms), so I am using the pooled option. These results are based off of a logistic regression. Here is my output:
Code:
. svyset [pweight = weight], str(stratum_var) psu(cluster_var) tab race, gen(race) tab educ, gen(educ) tab hhinc, gen(hhinc) tab age_g5, gen(age_g5 oaxaca cohab_par age_g52 age_g53 age_g54 age_g55 race2 race3 race4 imm /// > educ2 educ3 educ4 hhinc2 hhinc3 hhinc4, /// > by(rural) svy logit pooled Blinder-Oaxaca decomposition Number of strata = 18 Number of obs = 3,268 Number of PSUs = 72 Population size = 38,244,320 Design df = 54 Model = logit Group 1: rural = 0 N of obs 1 = 2116 Group 2: rural = 1 N of obs 2 = 468 Linearized cohab_par Coefficient std. err. t P>t [95% conf. interval] overall group_1 .1405385 .0141326 9.94 0.000 .1122043 .1688727 group_2 .2199063 .0242979 9.05 0.000 .1711919 .2686207 difference -.0793678 .0276199 -2.87 0.006 -.1347424 -.0239933 explained -.0197445 .0107814 -1.83 0.073 -.0413599 .0018708 unexplained -.0596233 .0273862 -2.18 0.034 -.1145294 -.0047172 explained age_g52 -.0005991 .0012 -0.50 0.620 -.0030048 .0018067 age_g53 -.001 .001295 -0.77 0.443 -.0035962 .0015963 age_g54 .0000969 .0009533 0.10 0.919 -.0018143 .0020081 age_g55 -.0004468 .0010476 -0.43 0.671 -.0025472 .0016535 race2 -.001195 .0013982 -0.85 0.396 -.0039982 .0016081 race3 .0009479 .00266 0.36 0.723 -.0043851 .0062809 race4 .0005973 .0013599 0.44 0.662 -.002129 .0033237 imm .0003432 .0019318 0.18 0.860 -.0035298 .0042161 educ2 -.0002301 .0009301 -0.25 0.806 -.0020949 .0016347 educ3 .0008762 .0017989 0.49 0.628 -.0027304 .0044828 educ4 -.012033 .005119 -2.35 0.022 -.022296 -.00177 hhinc2 -.0003015 .0006636 -0.45 0.651 -.0016318 .0010289 hhinc3 -.0001882 .0006291 -0.30 0.766 -.0014493 .001073 hhinc4 -.0066125 .0039993 -1.65 0.104 -.0146306 .0014057 unexplained age_g52 -.028689 .0165345 -1.74 0.088 -.0618386 .0044607 age_g53 -.0297615 .0290941 -1.02 0.311 -.0880916 .0285686 age_g54 -.0556364 .0411148 -1.35 0.182 -.1380666 .0267938 age_g55 -.0026016 .0261534 -0.10 0.921 -.055036 .0498328 race2 .0048568 .0077741 0.62 0.535 -.0107293 .0204428 race3 .0176802 .0161501 1.09 0.278 -.0146989 .0500593 race4 .0041202 .0058635 0.70 0.485 -.0076355 .0158759 imm -.0093887 .012094 -0.78 0.441 -.0336357 .0148583 educ2 .0047812 .0141557 0.34 0.737 -.0235994 .0331617 educ3 -.0291882 .026426 -1.10 0.274 -.0821691 .0237926 educ4 -.0366389 .0235373 -1.56 0.125 -.0838284 .0105505 hhinc2 .0017072 .0118416 0.14 0.886 -.0220339 .0254482 hhinc3 .0011674 .0093851 0.12 0.901 -.0176486 .0199834 hhinc4 -.0020982 .0118124 -0.18 0.860 -.0257806 .0215842 _cons .1000664 .098881 1.01 0.316 -.0981782 .2983109
Specifically, the only significant variables are found in the explained portion (educ4), and there are no significant variables in the unexplained portion (despite unexplained being significant overall).
Am I misinterpreting the results? Or, on a more technical level, how are standard errors and p-values calculated within an Oaxaca-Blinder Decomposition? Does the calculation differ when trying to estimate the significance of the overall explained/unexplained components than when trying to calculate the effects of individual variables?
Please let me know if I can clarify anything
0 Response to How are p-values calculated in an Oaxaca-Blinder Decomposition
Post a Comment