we're doing an inverted u-shape analysis on the impact of CSR Score on the TOA of different firms moderated by our time invariant moderator Consistency (Kurtosis of CSR Score).
We would like to investigate if the turning point of the u-shape relationships significantly deviates with different levels of consistency. Therefore we found examples who used the nlcom code using the minimum, maximum, mean, mean +1 SD & mean - 1 SD levels of the moderating variables values.
We ran the following:
Code:
xtreg roa c.csr_score##c.csr_score##c.consistency ln_firmsize ln_adi ln_rdi slack lev_w industry_growth industry > _concentration i.fyear, fe cluster(cusipnr) note: consistency omitted because of collinearity. Fixed-effects (within) regression Number of obs = 4,417 Group variable: cusipnr Number of groups = 606 R-squared: Obs per group: Within = 0.0754 min = 3 Between = 0.0699 avg = 7.3 Overall = 0.0472 max = 16 F(26,605) = 4.38 corr(u_i, Xb) = -0.3052 Prob > F = 0.0000 (Std. err. adjusted for 606 clusters in cusipnr) ------------------------------------------------------------------------------------------------------- | Robust roa | Coefficient std. err. t P>|t| [95% conf. interval] --------------------------------------+---------------------------------------------------------------- csr_score | .0017239 .0005557 3.10 0.002 .0006325 .0028154 | c.csr_score#c.csr_score | -.000018 5.19e-06 -3.46 0.001 -.0000282 -7.77e-06 | consistency | 0 (omitted) | c.csr_score#c.consistency | -.0007174 .0002731 -2.63 0.009 -.0012538 -.000181 | c.csr_score#c.csr_score#c.consistency | 7.78e-06 2.65e-06 2.94 0.003 2.58e-06 .000013 | ln_firmsize | -.0031383 .0062741 -0.50 0.617 -.0154599 .0091834 ln_adi | -.0052481 .0055574 -0.94 0.345 -.0161622 .005666 ln_rdi | -.0486486 .008962 -5.43 0.000 -.066249 -.0310483 slack | -.116426 .0318931 -3.65 0.000 -.1790607 -.0537912 lev_w | .0001744 .0007524 0.23 0.817 -.0013032 .001652 industry_growth | .0262122 .0120354 2.18 0.030 .002576 .0498483 industry_concentration | -.0017947 .0170669 -0.11 0.916 -.0353123 .0317229 | fyear | 2004 | .0264904 .0091348 2.90 0.004 .0085506 .0444301 2005 | .0261167 .0113369 2.30 0.022 .0038522 .0483813 2006 | .0290126 .0124341 2.33 0.020 .0045934 .0534318 2007 | .0214981 .0125808 1.71 0.088 -.0032092 .0462054 2011 | .0261853 .0138109 1.90 0.058 -.000938 .0533085 2012 | .0136148 .0139187 0.98 0.328 -.01372 .0409495 2013 | .0172718 .0141745 1.22 0.224 -.0105654 .0451089 2014 | .0222723 .0142534 1.56 0.119 -.0057199 .0502645 2015 | .0169446 .014851 1.14 0.254 -.0122211 .0461104 2016 | .0195737 .0148799 1.32 0.189 -.0096489 .0487963 2017 | .016874 .0156194 1.08 0.280 -.0138008 .0475488 2018 | .0337998 .0159556 2.12 0.035 .0024647 .0651348 2019 | .026212 .0169868 1.54 0.123 -.0071483 .0595723 2020 | .0236843 .0181686 1.30 0.193 -.011997 .0593655 2021 | .0459652 .0183655 2.50 0.013 .0098973 .082033 | _cons | -.1923473 .059989 -3.21 0.001 -.3101592 -.0745354 --------------------------------------+---------------------------------------------------------------- sigma_u | .13053874 sigma_e | .08199672 rho | .71707153 (fraction of variance due to u_i) -------------------------------------------------------------------------------------------------------
Code:
nlcom (_b[csr_score]*_b[c.csr_score#c.csr_score#c.consistency] - _b[c.csr_score#c.csr_score]*_b[c.csr_score#c.co > nsistency]) / 2*(_b[c.csr_score#c.csr_score]+_b[c.csr_score#c.csr_score#c.consistency]*(-5.954534))^2
Thank you for every little hint
0 Response to nlcom: maximum
Post a Comment