I need to do this since if a county is overly populated then survey observation from that county will bias my IV result since more observation will be from that county. Therefore , I need to collapse to accomplish the first stage of IV.
Here, dep_var is a variable that's converted into logarithmic form, endogen_var is my endogenous variable . I have two instrumental variable - IV_one and IV_two. My endogenous variable and IV_two are binary dummy. But, IV_one takes up multiple values ( ranging from 1-3)
Can anyone kindly guide me what commands to run to do the above approach ?
My ivregress looks like this:
Code:
ivregress 2sls dep_var (endogen_var=IV_one#IV_two) male ismarried wasmarried age age2 black asian hispanic lths hsdegree somecollege i.year i.IV_one i.IV_two i.county , cluster(county) first
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float dep_var int year double county float(endogen_var IV_one IV_two male ismarried wasmarried age age2 black asian hispanic lths hsdegree somecollege) 9.999117 2013 10003 1 1 1 .4589878 .52443284 .15445027 41.98604 1944.672 .2678883 .066317625 .12041885 .09685864 .2897033 .26876092 10.16623 2006 10003 0 1 0 .4700499 .5657238 .14559068 39.98419 1757.8794 .22545756 .05990016 .09317803 .13061564 .3169717 .27121463 10.11985 2020 10003 1 1 1 .51072127 .53216374 .1325536 42.11696 1959.041 .23391813 .0779727 .11111111 .074074075 .294347 .22807017 10.09567 2009 10003 0 1 0 .47560975 .57229966 .1358885 40.77874 1822.1376 .228223 .05139373 .0879791 .09059233 .2979094 .26567945 10.02907 2011 10003 1 1 0 .4818038 .52373415 .1431962 40.24367 1791.8386 .23338607 .05221519 .10838608 .11234177 .3156646 .27373418 9.984045 2012 10003 1 1 1 .4660596 .52483445 .15066226 40.99917 1860.7905 .2673841 .06043046 .125 .12168874 9.94321 2017 12057 0 1 0 .4686717 .5112782 .12531328 40.12281 1779.857 .14786968 .0726817 .2982456 .067669176 .3283208 .23809524 10.033404 2016 12057 0 1 0 .46875 .4921875 .15885417 41.88281 1928.138 .1640625 .05729167 .3072917 .04947917 .3072917 .27864584 10.12466 2021 12057 1 1 1 .50442475 .5162242 .14454277 41.51033 1884.826 .14159292 .0619469 .4424779 .064896755 .3156342 .25958702 10.158172 2019 12057 1 1 1 .4940334 .5393795 .1718377 40.7327 1832.3174 .14081146 .06205251 .3556086 .09307876 .28400955 .2673031 9.985887 2015 12057 0 1 0 .4722955 .530343 .14775726 40.43008 1810.0132 .1741425 .04221636 .3139842 .07387863 .3218997 .2453826 10.07322 2020 12057 1 1 1 .4801325 .49668875 .18543047 41.85431 1929.927 .16225165 .07284768 .3940397 .08609272 .24 10.122314 2009 18063 1 1 0 .44444445 .6944444 .11111111 43.44444 2088.25 0 .01388889 .01388889 .05555556 .30555555 .4027778 10.343414 2020 20091 1 1 1 .4747899 .6554622 .11344538 41.44538 1881.269 .071428575 .08403362 .1092437 .03781513 .12605043 .20588236 10.273802 2021 20091 1 1 1 .4718615 .6147186 .0995671 41.07359 1855.117 .03030303 .064935066 .12987013 .04329005 .11688311 .2164502 10.339568 2019 20091 1 1 1 .4730769 .6269231 .1423077 40.26154 1765.823 .08076923 .023076924 .1076923 .06538462 .11923077 .21923077 10.27767 2018 20091 1 1 1 .4763636 .6072727 .14545454 40.68727 1810.7236 .06909091 .025454545 .09818182 .07636364 .145 10.001433 2015 12001 0 1 0 .5 .4285714 .10714286 38.96429 1733.1786 .25 .17857143 0 0 .25 .25 9.72764 2006 12005 0 2 0 .4821429 .58928573 .2142857 41.23214 1885.3036 .125 .035714287 .125 .19642857 .25 .375 10.269828 2018 12005 0 2 0 .5254237 .6271186 .13559322 39.83051 1733.017 .18644068 0 .08474576 .05084746 .2542373 .3220339 10.068893 2008 12005 0 2 0 .53731346 .5970149 .2238806 42.46269 1961.5374 .08955224 0 .08955224 .029850746 .4179105 .4179105 9.974488 2007 12005 0 2 0 .5416667 .5972222 .20833333 41.20833 1883.7084 .15277778 .01388889 .06944445 .05555556 .3888889 .4027778 9.98806 2016 12009 0 1 0 .4545455 .5041322 .20661157 42.3719 1982.157 .1322314 .02479339 .20661157 .07438017 .3719008 .32231405 10.04933 2017 12009 1 1 1 .4778761 .6017699 .15929204 42.90266 1999.6637 .14159292 .0088495575 .11504425 .04424779 .300885 .3362832 10.16503 2012 12009 0 1 1 .480916 .5648855 .22137405 44.22901 2147.1755 .10687023 .015267176 .08396947 .06870229 .29007635 .29007635 10.19963 2019 12009 1 1 1 .6020408 .5408163 .13265306 43.21429 2085.6633 .1632653 0 .1122449 .030612245 .14285715 .4489796 9.983001 2013 12009 1 1 1 .4890511 .5912409 .13868614 41.88321 1932.9343 .08029197 .09489051 .09489051 .03649635 .23357664 .3576642 10.12681 2008 12009 0 1 0 .4722222 .6736111 .11805555 43.47222 2037.0695 .06944445 .02777778 .13194445 .07638889 .215277 9.510912 2006 48141 0 3 0 .4918033 .6680328 .12295082 38.55738 1660.213 .020491803 .020491803 .8647541 .3032787 .24590164 .28278688 9.691033 2012 48141 0 3 0 .4596491 .5754386 .14736842 39.83509 1783.0842 .014035088 .007017544 .8807018 .2 .3052632 .27719298 9.956921 2015 48141 0 3 0 .4732143 .51785713 .1517857 39.45536 1756.5803 .017857144 0 .9285714 .25892857 .2767857 .23214285 9.749756 2014 48141 0 3 0 .4222222 .56666666 .15555556 40.5 1830.1593 .04814815 .0037037036 .9 .1962963 .27407408 .3259259 9.540812 2007 48141 0 3 0 .4552529 .5992218 .1634241 37.976654 1605.5098 .023346303 .007782101 .9027237 .29182878 .28015563 end
0 Response to collapsing repeated cross section data to panel for first stage IV , then storing the result to run second stage on repeated cross section
Post a Comment