I have been struggling with coding this. I try to run to 2 loops but it failed. So, I hope someone can help me out.
My data has, say, 2 groups (1&2). I'd like to regress coef_std on j_ln in a subsample of all observations which has id< current id, within each group. Then, I take coefficients on j_ln from that regression, assign into all observations in this subsample, which is called beta_pre
For example:
1) at id=3, group 1: I want to regress coef_std on j_ln of all observations with id=1 and id=2, then I take the coefficient on j_ln of that regression and assign into beta_pre of all observations with id=1 and id=2
2) at id=22, group 2: I want to regress coef_std on j_ln of all observations with id=20, and id =21 (which is only in group 2, not from id=1 to id=19), then I take the coefficient on j_ln of that regression and assign into beta_pre of all observations with id=20 and id=21
I hope I am clear about that.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte Groups float(coef_std j_ln id beta_pre) 1 -.1092731 .998055 1 . 1 -.10569589 .998055 1 . 1 -.05203765 -.8347107 2 . 1 -.005533839 -.8347107 2 . 1 -.05203765 -.8347107 2 . 1 -.05203765 -.8347107 2 . 1 -.10211867 -.8347107 2 . 1 -.02341992 -.8347107 2 . 1 -.05561486 -.8347107 2 . 1 -.05919208 -.8347107 2 . 1 -.11642753 -.8347107 2 . 1 -.10569589 -.8347107 2 . 1 -.12000475 -.8347107 3 . 1 -.1987035 -.8347107 3 . 1 .16974975 1.7107302 4 . 1 -.06459367 1.6678954 4 . 1 -.2022807 1.7107302 4 . 1 -.09496424 -2.748872 4 . 1 .08389656 -2.748872 4 . 1 .04096997 1.7107302 4 . 1 -.06051565 1.6678954 4 . 1 -.20442705 -2.465104 5 . 1 -.1142812 -2.465104 5 . 1 -.0463141 -2.465104 5 . 1 -.4634175 -2.465104 5 . 1 -.154346 1.1565667 6 . 1 -.0878098 -4.828314 6 . 1 -.13431361 -4.828314 6 . 1 -.1457607 1.1565667 6 . 1 -.12000475 -4.828314 6 . 1 -.12715918 -4.828314 6 . 1 -.21480097 1.1565667 6 . 1 -.3167516 -1.6144505 6 . 1 -.03057435 -4.828314 6 . 1 -.17008577 -4.828314 6 . 1 -.034151565 1.1565667 6 . 1 -.16185817 1.1565667 6 . 1 -.1536306 1.1565667 6 . 1 -.14146805 -1.6144505 6 . 1 -.07707816 -4.828314 6 . 1 -.13431361 -4.828314 6 . 2 -.27092713 2.625393 20 . 2 -.2986687 2.625393 20 . 2 -.3726464 2.625393 20 . 2 .08046687 2.625393 20 . 2 -.20619665 2.625393 20 . 2 -.13221897 2.625393 20 . 2 -.3217868 1.1565667 21 . 2 -.9237801 1.1565667 21 . 2 -.12389648 1.1565667 21 . 2 .3412382 1.1565667 21 . 2 -.51227933 1.1565667 21 . 2 .9450811 1.1565667 21 . 2 .0157364 1.7107302 22 . 2 .8017493 1.7107302 22 . 2 -.01200523 1.7107302 22 . 2 .5058386 1.7107302 22 . 2 .11745571 1.7107302 22 . 2 -.04899407 1.7107302 22 . 2 .11745571 1.7107302 22 . 2 .05272524 1.7107302 22 . 2 .22842224 1.7107302 22 . 2 -.28942153 1.7107302 23 . 2 -.02125244 -.58519006 23 . 2 -.12297176 1.7107302 23 . 2 -.4373769 1.7107302 23 . 2 -.13221897 1.7107302 23 . 2 -.178455 1.7107302 23 . 2 -.13221897 1.7107302 23 . 2 -.12297176 1.7107302 23 . 2 -.08598291 1.7107302 23 . 2 .5613218 1.7107302 23 . 2 -.1692078 1.7107302 23 . 2 -.27092713 -.58519006 23 . 2 -.03974686 1.791593 24 . 2 .05272524 1.791593 24 . 2 -.0767357 1.1565667 24 . 2 -.3726464 1.791593 24 . 2 -.2431855 1.1565667 24 . 2 -.27092713 1.791593 24 . end
Thank you!
0 Response to Regression on observations prior to current id
Post a Comment