By following Dr. Woodridge's advice on Statalist, I applied the ordered probit before I ran the two-stage least square. Here is the link where I got this advice:
https://www.statalist.org/forums/for...=1617356656297
I need more opinions or advice on doing this and how to interpret the coefficient.
z is my continuous instrument variable. Here is my code.
Internet UseFre5 | Freq. Percent Cum.
-------------------------------------+-----------------------------------
0. Never | 25,326 41.04 41.04
1. Occasionally | 3,754 6.08 47.12
2. Several times a week | 5,315 8.61 55.73
3. Once a day | 7,327 11.87 67.60
4. Several times a day\ All the time | 19,994 32.40 100.00
-------------------------------------+-----------------------------------
Total | 61,716 100.00
cheated | Freq. Percent Cum.
---------------+-----------------------------------
-1. Don't Know | 600 0.74 0.74
0. No | 77,288 95.06 95.79
1. Yes | 3,420 4.21 100.00
---------------+-----------------------------------
Total | 81,308 100.00
tabulate Internet_UseFre5, gen(d)
xi: oprobit Internet_UseFre5 z i.year i.country
predict d0h d1h d2h d3h d4h
xi:ivregress 2sls cheated (d2 d3 d4 d5 = d1h d2h d3h d4h) i.year i.country if cheated>-1, robust
d1= Never (ref)
d2= Occasionally
d3= Several times a week
d4= Once a day
d5= Several times a day\ All the time
d0h=Never (ref)
d1h=Occasionally
d2h=Several times a week
d3h=Once a day
d4h=Several times a day\ All the time
Instrumental variables 2SLS regression Number of obs = 61,345
Wald chi2(33) = 484.26
Prob > chi2 = 0.0000
R-squared = .
Root MSE = .43568
------------------------------------------------------------------------------
| Robust
cheated | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
d2 | 1.088271 1.186184 0.92 0.359 -1.236606 3.413148
d3 | -.9737936 1.018278 -0.96 0.339 -2.969581 1.021994
d4 | .1615734 .2719028 0.59 0.552 -.3713463 .694493
d5 | .1429395 .0656786 2.18 0.030 .0142118 .2716673
_Iyear_2013 | -.0154354 .0048815 -3.16 0.002 -.025003 -.0058678
_Iyear_2014 | -.0005229 .0478025 -0.01 0.991 -.0942141 .0931683
_Icountry_2 | -.0699497 .0767293 -0.91 0.362 -.2203363 .0804369
_Icountry_3 | -.0547166 .045909 -1.19 0.233 -.1446965 .0352634
_Icountry_4 | -.1057375 .0901781 -1.17 0.241 -.2824834 .0710083
_Icountry_5 | -.0951339 .0794164 -1.20 0.231 -.2507872 .0605195
_Icountry_6 | -.0460229 .0340111 -1.35 0.176 -.1126835 .0206377
_Icountry_7 | -.1486605 .0912381 -1.63 0.103 -.3274839 .0301629
_Icountry_8 | -.1216828 .0963118 -1.26 0.206 -.3104505 .0670848
_Icountry_9 | -.1182297 .0943019 -1.25 0.210 -.3030581 .0665986
_Icountry_10 | -.1185502 .091776 -1.29 0.196 -.2984277 .0613274
_Icountry_11 | -.0619843 .0483694 -1.28 0.200 -.1567865 .032818
_Icountry_12 | -.1002474 .0707969 -1.42 0.157 -.2390069 .038512
_Icountry_13 | -.0345833 .0445779 -0.78 0.438 -.1219543 .0527877
_Icountry_14 | -.0467488 .0625823 -0.75 0.455 -.1694078 .0759102
_Icountry_15 | -.0412707 .048214 -0.86 0.392 -.1357683 .0532269
_Icountry_16 | -.1368185 .105492 -1.30 0.195 -.3435791 .0699421
_Icountry_17 | -.1212968 .0871777 -1.39 0.164 -.292162 .0495684
_Icountry_18 | -.0880058 .0668085 -1.32 0.188 -.2189481 .0429364
_Icountry_19 | -.1029886 .1010635 -1.02 0.308 -.3010694 .0950923
_Icountry_20 | -.1101948 .0796603 -1.38 0.167 -.2663262 .0459365
_Icountry_21 | -.0736924 .0706536 -1.04 0.297 -.212171 .0647862
_Icountry_22 | -.0899739 .0817671 -1.10 0.271 -.2502345 .0702866
_Icountry_23 | -.0795511 .0879443 -0.90 0.366 -.2519188 .0928166
_Icountry_24 | -.0439061 .0310109 -1.42 0.157 -.1046864 .0168743
_Icountry_25 | -.1058146 .0697757 -1.52 0.129 -.2425725 .0309433
_Icountry_26 | -.0985241 .0907529 -1.09 0.278 -.2763965 .0793482
_Icountry_27 | -.1403589 .0991263 -1.42 0.157 -.3346429 .053925
_Icountry_28 | -.0896062 .1030279 -0.87 0.384 -.2915372 .1123248
_cons | .0808889 .0816798 0.99 0.322 -.0792007 .2409785
------------------------------------------------------------------------------
Instrumented: d2 d3 d4 d5
Instruments: _Iyear_2013 _Iyear_2014 _Icountry_2 _Icountry_3 _Icountry_4
_Icountry_5 _Icountry_6 _Icountry_7 _Icountry_8 _Icountry_9
_Icountry_10 _Icountry_11 _Icountry_12 _Icountry_13
_Icountry_14 _Icountry_15 _Icountry_16 _Icountry_17
_Icountry_18 _Icountry_19 _Icountry_20 _Icountry_21
_Icountry_22 _Icountry_23 _Icountry_24 _Icountry_25
_Icountry_26 _Icountry_27 _Icountry_28 d1h d2h d3h d4h
If I only do the 2sls, my result is below:
xi:ivregress 2sls cheated (Internet_UseFre5 =z) i.year i.country if cheated>-1, first robust
Instrumental variables 2SLS regression Number of obs = 61,345
Wald chi2(30) = 2085.56
Prob > chi2 = 0.0000
R-squared = .
Root MSE = .19229
----------------------------------------------------------------------------------
| Robust
cheated | Coefficient std. err. z P>|z| [95% conf. interval]
-----------------+----------------------------------------------------------------
Internet_UseFre5 | .0535563 .0079977 6.70 0.000 .0378811 .0692315
_Iyear_2013 | -.014059 .0018248 -7.70 0.000 -.0176356 -.0104824
_Iyear_2014 | .0593533 .0158059 3.76 0.000 .0283744 .0903322
_Icountry_2 | -.0020516 .0071126 -0.29 0.773 -.015992 .0118887
_Icountry_3 | .0013182 .0066464 0.20 0.843 -.0117086 .014345
_Icountry_4 | -.0071633 .0063434 -1.13 0.259 -.0195961 .0052695
_Icountry_5 | -.012271 .0067308 -1.82 0.068 -.025463 .0009211
_Icountry_6 | -.0189606 .0060433 -3.14 0.002 -.0308053 -.0071159
_Icountry_7 | -.0853614 .0098064 -8.70 0.000 -.1045817 -.0661411
_Icountry_8 | -.0291369 .0059988 -4.86 0.000 -.0408943 -.0173794
_Icountry_9 | -.0300534 .0060916 -4.93 0.000 -.0419928 -.018114
_Icountry_10 | -.0390998 .0071333 -5.48 0.000 -.0530808 -.0251188
_Icountry_11 | -.0172367 .0056415 -3.06 0.002 -.0282938 -.0061796
_Icountry_12 | -.0174856 .0059346 -2.95 0.003 -.0291171 -.005854
_Icountry_13 | .0173656 .0067088 2.59 0.010 .0042165 .0305146
_Icountry_14 | .0059199 .0074152 0.80 0.425 -.0086137 .0204534
_Icountry_15 | .0048612 .0065805 0.74 0.460 -.0080364 .0177588
_Icountry_16 | -.0389928 .0063976 -6.09 0.000 -.0515318 -.0264538
_Icountry_17 | -.033172 .0052384 -6.33 0.000 -.0434392 -.0229049
_Icountry_18 | -.0369552 .0091222 -4.05 0.000 -.0548344 -.019076
_Icountry_19 | .0077851 .0075843 1.03 0.305 -.0070798 .02265
_Icountry_20 | -.0619523 .0109204 -5.67 0.000 -.0833559 -.0405488
_Icountry_21 | .009305 .0068316 1.36 0.173 -.0040847 .0226946
_Icountry_22 | .0124935 .007683 1.63 0.104 -.002565 .0275519
_Icountry_23 | .0277552 .0076436 3.63 0.000 .012774 .0427365
_Icountry_24 | -.0110729 .005812 -1.91 0.057 -.0224643 .0003185
_Icountry_25 | -.0369066 .0052607 -7.02 0.000 -.0472174 -.0265958
_Icountry_26 | -.0038788 .0060677 -0.64 0.523 -.0157713 .0080137
_Icountry_27 | -.0684286 .0103549 -6.61 0.000 -.0887238 -.0481334
_Icountry_28 | .0090188 .0066887 1.35 0.178 -.0040909 .0221284
_cons | -.050694 .0170752 -2.97 0.003 -.0841608 -.0172273
----------------------------------------------------------------------------------
Instrumented: Internet_UseFre5
Instruments: _Iyear_2013 _Iyear_2014 _Icountry_2 _Icountry_3 _Icountry_4
_Icountry_5 _Icountry_6 _Icountry_7 _Icountry_8 _Icountry_9
_Icountry_10 _Icountry_11 _Icountry_12 _Icountry_13 _Icountry_14
_Icountry_15 _Icountry_16 _Icountry_17 _Icountry_18 _Icountry_19
_Icountry_20 _Icountry_21 _Icountry_22 _Icountry_23 _Icountry_24
_Icountry_25 _Icountry_26 _Icountry_27 _Icountry_28 z
My question is should I really do the ordered probit before 2sls? Any advice would be wonderful.
Related Posts with Ordered probit before applying ivregress 2sls commend
mixed effect generalised linear model with binary data and identity link functionHi Statalisters, I am looking to fitting a mixed model for binary data with an identity or log link…
Collinearity because of technical problem in Fixed Effects Panel RegressionHi, I am trying to look at the differences in income between African-Americans and White Americans.…
Creating groups for variablesHi, I am conducting a difference-in-differences regression to determine the effect of National Livi…
Using several loops togetherHi all, I am new in this forum so if this is not the proper place to post this question let me know…
Interpreting the coefficients of ARIMA (ARIMAX model)Dear all, am kindly requesting help on interpretation of ARIMA model coefficients with both MA and A…
Subscribe to:
Post Comments (Atom)
0 Response to Ordered probit before applying ivregress 2sls commend
Post a Comment