I am struggling to perform a system GMM analysis. I am new to this method and have read the basic papers. When I try the xtabond2 command, however, the output does not present any values for AR(1) or AR(2).
My model generally investigates the effect of inequality on economic growth from 1990 to 2015:
ΔGDP = GDPt-1 + ginit-1 + bottom inequalityt-1 + top inequalityt-1 + redistributiont-1 + average investmentt + human capitalt-1
ΔGDP is taken over a 5 year period (all lags are a 5-year period (lagged values for 1990 are taken from 1985)).
Code:
input float(growthlny llny lgininet lbottominq ltopinq lredabs avrginv lhumancapital) byte(y1990 y1995 y2000 y2005 y2010) .2323642 8.362949 40.1 2.894325 3.27451 .7 17.03367 7.45 1 0 0 0 0 .7023568 8.595314 42.1 3 4.3650794 .5 17.654509 7.88 0 1 0 0 0 .1649471 9.29767 43.7 3.5292554 4.053504 .4 18.318789 8.34 0 0 1 0 0 -.008170462 9.462618 45.7 4.419355 3.89781 -.3 14.904442 8.55 0 0 0 1 0 .2285496 9.454447 43.9 2.843137 3.3793104 .2 17.81613 9.26 0 0 0 0 1 .03858224 9.682997 40 2.5 3.2689655 1.3 16.188004 9.48 0 0 0 0 0 .09274411 7.105482 31.3 1.7181275 2.1588407 5.3 15.993094 2.4 1 0 0 0 0 .08115608 7.198225 32.1 1.79661 2.2759433 4.9 17.934032 2.84 0 1 0 0 0 -.068234116 7.279382 33.4 1.7838453 2.7066326 4.4 22.2395 3.29 0 0 1 0 0 .07602675 7.211147 34.5 1.8057803 2.731114 4.1 24.803436 3.69 0 0 0 1 0 .4567258 7.287174 35.1 1.7796804 2.727389 4.2 26.195526 4.19 0 0 0 0 1
Code:
xtabond2 growthlny llny lgininet lbottominq ltopinq lredabs avrginv lhumancapital y*, gmmstyle (llny lgininet lbottominq ltopinq, collapse) ivstyle(y*, equation (level)) nodiffsargan robust orthogonal small
Code:
xtabond2 growthlny llny lgininet lbottominq ltopinq lredabs avrginv lhumancapital y*, gmmstyle (llny lgininet lb > ottominq ltopinq, collapse) ivstyle(y*, equation (level)) nodiffsargan robust orthogonal small Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate robust weighting matrix for Hansen test. Dynamic panel-data estimation, one-step system GMM ------------------------------------------------------------------------------ Group variable: cid Number of obs = 167 Time variable : time Number of groups = 28 Number of instruments = 26 Obs per group: min = 5 F(12, 27) = 22.26 avg = 5.96 Prob > F = 0.000 max = 6 ------------------------------------------------------------------------------- | Robust growthlny | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------+---------------------------------------------------------------- llny | -.9889005 .3025729 -3.27 0.003 -1.609729 -.3680721 lgininet | -.0025041 .0240529 -0.10 0.918 -.0518566 .0468484 lbottominq | -.0023967 .051481 -0.05 0.963 -.108027 .1032335 ltopinq | -.0146415 .0978276 -0.15 0.882 -.2153671 .1860842 lredabs | -.0355697 .0614711 -0.58 0.568 -.1616979 .0905586 avrginv | .0379343 .0144294 2.63 0.014 .0083276 .067541 lhumancapital | .1521571 .1023877 1.49 0.149 -.0579252 .3622393 y1990 | -.3122944 .2985934 -1.05 0.305 -.9249575 .3003687 y1995 | -.2628505 .2342049 -1.12 0.272 -.7433994 .2176983 y2000 | -.253974 .1783147 -1.42 0.166 -.6198454 .1118975 y2005 | -.2029251 .1485477 -1.37 0.183 -.5077197 .1018696 y2010 | -.0632347 .0876716 -0.72 0.477 -.243122 .1166526 _cons | 7.341048 2.27664 3.22 0.003 2.669769 12.01233 ------------------------------------------------------------------------------- Instruments for orthogonal deviations equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/25).(llny lgininet lbottominq ltopinq) collapsed Instruments for levels equation Standard y1990 y1995 y2000 y2005 y2010 _cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(llny lgininet lbottominq ltopinq) collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = . Pr > z = . Arellano-Bond test for AR(2) in first differences: z = . Pr > z = . ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(13) = 3.79 Prob > chi2 = 0.993 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(13) = 11.17 Prob > chi2 = 0.597 (Robust, but weakened by many instruments.)
The instruments here are still very rough and need to be reconsidered but as I am just starting to work with this method, I would first like to find out where I made a mistake that leads to missing AR-values.
Thank you for your help!
0 Response to Missing AR(1) and AR(2) in System GMM
Post a Comment