Dear all,
I am modelling household water use data (i.e., total annual household water use). The distribution of this variable is log-normal -- but rather than log-transforming this outcome variable, I have elected to use a Poisson model w/robust standard errors (see: https://blog.stata.com/2011/08/22/us...tell-a-friend/).
My question here is concerning model fit/comparison across models. I am wondering if AIC and BIC (as estimated by Stata's estat ic command) are appropriate as a measurement for model fit, given that this modelling approach is based on log psuedolikelihood? And if not...which criterion/statistics may be used to assess/compare model fit for such a model?
Thanks very much for your time,
Matt
Related Posts with Model selection/comparing model fit in a quasi likelihood model (i.e., Poisson w/robust standard errors)
Strings. Selecting the first occurrence of specific words in a string then ordering the selected words in a consistent way.Hello Statalist I have a data set with a variable haart1 (combination antiretroviral) as shown below…
Loop by variable nameHi, I would like to create average variables which are the average of the last three years. For exa…
Matched pair identifierDear Statalisters, I have a dataset which matches romantic partners in the following way: Code: c…
Harmonizing cross-sections along the time dimensionI have the following problem: I have a data set with a panel structure and I want to estimate a regr…
query on creating dummy variableBelow is my data. "residuals" are all the negative numbers and I created another variable "dummy" wh…
Subscribe to:
Post Comments (Atom)
0 Response to Model selection/comparing model fit in a quasi likelihood model (i.e., Poisson w/robust standard errors)
Post a Comment