Howdy, Statalisters,
I'm trying to create comparison groups to ultimately move into a diff-in-diff evaluating policy effect.
I can't figure out how to appropriately do PSM for panel data and get conflicting advice based on what I'm reading.
I have a policy that took effect in 2013 and all institutions that should be in the treatment group received the treatment at the same time. I know I need to match on pre-intervention characteristics.
Characteristics I want to match on: f1b11_mil, upgrntt_mil, sgrnt_p, igrnt_p, scfa2, scfa13p
Outcome of Interest: tuition2
Binary treatment variable: treat
Pre-treatment year to match on: 2009 (4 years prior to treatment)
There are 540 unique unitids (ID variable)
input long unitid str75 inst_name int year byte(opeflag fips sector deggrant instcat ftftug) long(f1b11 scfa2) byte scfa13p long upgrntt byte(sgrnt_p igrnt_p) int(tuition2 fee2) float(f1b11_mil upgrntt_mil treat)
input long unitid int year byte(opeflag fips sector deggrant instcat ftftug) float(upgrntt_mil f1b11_mil) int(fee2 tuition2) byte(igrnt_p sgrnt_p) long scfa2 byte scfa13p float treat
100654 2008 1 1 1 1 2 1 8.90603 42.45104 640 3432 15 4 4297 39 0
100654 2009 1 1 1 1 2 1 13.75782 38.35684 744 3948 27 4 4496 41 0
100654 2010 1 1 1 1 2 1 16.12934 38.82124 928 4872 33 4 4940 36 0
100654 2011 1 1 1 1 2 1 13.88352 40.40534 1500 5328 22 6 4285 29 0
100654 2012 1 1 1 1 2 1 13.857038 39.33574 1590 5592 32 1 4170 38 0
100654 2013 1 1 1 1 2 1 13.670262 39.88214 1590 5592 49 1 4051 32 0
100654 2014 1 1 1 1 2 1 14.741945 40.10284 1596 7500 70 1 4210 32 0
100654 2015 1 1 1 1 2 1 14.64031 40.52152 1596 7770 56 1 4505 26 0
100654 2016 1 1 1 1 2 1 15.953983 41.01709 1236 8130 55 6 4851 39 0
100654 2017 1 1 1 1 2 1 17.821852 41.01709 1478 8379 68 5 5039 47 0
100654 2018 1 1 1 1 2 1 18.20018 42.59988 1134 8610 64 4 5143 53 0
100654 2019 1 1 1 1 2 1 19.91651 46.71782 1414 8610 54 3 5273 51 0
100663 2008 1 1 1 1 2 1 8.913727 284.94476 872 3792 54 1 10369 9 0
100663 2009 1 1 1 1 2 1 13.67419 256.19058 872 4224 57 1 10646 9 0
100663 2010 1 1 1 1 2 1 17.59017 254.28854 0 5806 56 1 11028 10 0
100663 2011 1 1 1 1 2 1 16.988588 268.64035 0 6264 57 0 11128 12 0
100663 2012 1 1 1 1 2 1 15.837111 258.42984 0 6798 60 0 11291 13 0
100663 2013 1 1 1 1 2 1 16.360283 264.07272 0 7206 66 0 11542 13 0
100663 2014 1 1 1 1 2 1 16.991112 265.2935 0 7510 72 0 11679 15 0
100663 2015 1 1 1 1 2 1 17.813177 267.32974 0 7766 77 0 11511 16 0
100663 2016 1 1 1 1 2 1 19.483265 272.16626 0 8040 74 0 12369 15 0
100663 2017 1 1 1 1 2 1 24.210266 273.35114 0 8328 77 2 13134 15 0
100663 2018 1 1 1 1 2 1 26.68324 287.69174 0 8568 78 3 13836 16 0
100663 2019 1 1 1 1 2 1 26.747816 306.9647 0 8568 82 1 13836 16 0
100706 2008 1 1 1 1 2 1 4.546748 45.86145 900 5052 62 2 5893 10 0
100706 2009 1 1 1 1 2 1 10.007614 43.07262 930 5580 66 2 6119 11 0
100706 2010 1 1 1 1 2 1 11.415048 42.70377 1140 6352 71 1 6005 12 0
100706 2011 1 1 1 1 2 1 8.610964 43.24059 0 8094 65 2 5935 12 0
100706 2012 1 1 1 1 2 1 8.136506 42.71096 0 8794 63 1 5882 13 0
100706 2013 1 1 1 1 2 1 7.614492 43.10239 0 9192 66 1 5696 9 0
100706 2014 1 1 1 1 2 1 7.613859 43.99723 0 9158 74 3 5618 15 0
100706 2015 1 1 1 1 2 1 7.468719 44.95922 0 9128 76 1 6013 22 0
100706 2016 1 1 1 1 2 1 7.442209 47.83325 846 8996 75 1 6507 23 0
100706 2017 1 1 1 1 2 1 8.194441 48.35246 924 9356 82 1 7090 24 0
100706 2018 1 1 1 1 2 1 8.700366 52.36505 984 9730 83 1 7671 28 0
100706 2019 1 1 1 1 2 1 8.533685 55.3336 1392 9730 87 1 7987 31 0
100724 2008 1 1 1 1 2 1 12.590665 45.73027 852 4608 30 15 4730 47 0
100724 2009 1 1 1 1 2 1 15.51089 45.81357 852 5616 33 7 4638 47 0
100724 2010 1 1 1 1 2 1 16.512516 47.14528 852 6312 30 14 4882 34 0
100724 2011 1 1 1 1 2 1 16.038794 44.31322 1770 6312 33 17 4743 30 0
100724 2012 1 1 1 1 2 1 17.190329 42.65814 1620 6312 34 11 5130 35 0
100724 2013 1 1 1 1 2 1 16.640139 43.32461 1784 6936 36 7 5356 39 0
100724 2014 1 1 1 1 2 1 15.424078 41.88078 1784 6936 39 10 4805 47 0
100724 2015 1 1 1 1 2 1 16.0307 42.29859 1784 6936 32 10 4764 44 0
100724 2016 1 1 1 1 2 1 14.936663 42.94614 2284 6936 37 8 4727 35 0
100724 2017 1 1 1 1 2 1 14.14102 43.25482 2740 8328 41 8 4208 32 0
100724 2018 1 1 1 1 2 1 14.182984 46.91959 2740 8328 46 6 3903 42 0
100724 2019 1 1 1 1 2 1 13.341998 49.98301 2740 8328 38 7 3750 48 0
100751 2008 1 1 1 1 2 1 13.423014 156.52147 0 6400 39 2 22341 36 0
100751 2009 1 1 1 1 2 1 21.01965 138.54085 0 7000 44 1 23700 38 0
100751 2010 1 1 1 1 2 1 25.219826 137.4272 0 7900 46 4 24420 42 0
100751 2011 1 1 1 1 2 1 23.875544 145.95123 0 8600 49 7 26234 49 0
100751 2012 1 1 1 1 2 1 23.68567 140.6999 0 9200 50 2 28026 54 0
100751 2013 1 1 1 1 2 1 24.54046 144.23485 0 9450 53 1 29440 58 0
100751 2014 1 1 1 1 2 1 25.44726 146.22292 0 9826 55 1 30752 63 0
100751 2015 1 1 1 1 2 1 25.83105 148.44188 0 10170 56 1 31958 64 0
100751 2016 1 1 1 1 2 1 24.65764 154.8363 0 10470 57 1 32480 66 0
100751 2017 1 1 1 1 2 1 27.17063 156.7428 0 10780 57 1 33305 65 0
100751 2018 1 1 1 1 2 1 26.857683 169.7337 0 10780 56 3 33028 64 0
100751 2019 1 1 1 1 2 1 26.35378 182.79796 0 10780 65 3 32795 61 0
100830 2008 1 1 1 1 2 1 4.723343 24.8307 270 5310 21 15 4469 8 0
100830 2009 1 1 1 1 2 1 7.260708 22.842974 330 5640 18 6 4695 6 0
100830 2010 1 1 1 1 2 1 8.761985 22.826807 440 6180 32 19 4829 9 0
100830 2011 1 1 1 1 2 1 7.31186 22.863407 650 6930 33 3 4403 6 0
100830 2012 1 1 1 1 2 1 6.985468 21.947664 650 7500 48 5 4239 7 0
100830 2013 1 1 1 1 2 1 7.648208 22.55773 650 8100 41 3 4334 4 0
100830 2014 1 1 1 1 2 1 8.200942 22.6638 650 8430 33 3 4377 12 0
100830 2015 1 1 1 1 2 1 8.186193 22.7753 650 8700 33 2 4257 11 0
100830 2016 1 1 1 1 2 1 8.333386 22.99492 760 8880 44 3 4273 8 0
100830 2017 1 1 1 1 2 1 9.843336 23.31845 700 7320 86 2 4313 9 0
100830 2018 1 1 1 1 2 1 11.167484 25.59884 868 7536 89 5 4632 12 0
100830 2019 1 1 1 1 2 1 11.282206 27.002506 868 7752 90 4 4523 9 0
100858 2008 1 1 1 1 2 1 8.713446 236.8604 620 5880 52 2 20037 42 0
100858 2009 1 1 1 1 2 1 13.466878 213.36974 732 6240 57 2 19926 42 0
100858 2010 1 1 1 1 2 1 15.528426 212.89734 892 7008 62 2 20221 43 0
100858 2011 1 1 1 1 2 1 14.252439 224.95274 1402 7296 69 1 20446 44 0
100858 2012 1 1 1 1 2 1 13.54504 216.6535 1574 7872 65 1 20175 37 0
100858 2013 1 1 1 1 2 1 13.094865 220.4243 1596 8256 65 0 19799 35 0
100858 2014 1 1 1 1 2 1 13.920345 222.8384 1608 8592 57 1 20629 38 0
100858 2015 1 1 1 1 2 1 14.05016 225.2862 1616 8808 59 1 21786 38 0
100858 2016 1 1 1 1 2 1 14.119303 231.68108 1624 9072 62 1 22658 39 0
100858 2017 1 1 1 1 2 1 17.071264 233.2523 1632 9336 62 1 23964 40 0
100858 2018 1 1 1 1 2 1 16.757233 247.33 1652 9624 61 2 24628 40 0
100858 2019 1 1 1 1 2 1 15.631504 262.83594 1676 9816 59 2 24594 44 0
1. Do my data need to be in wide format?
2. Will psmatch2 work for this?
Related Posts with Matching Panel Data to Diff-in-Diff
Trying to add percentage to graph value label - I have looked at other threads....Hello: I'm trying to add a percentage sign next to value labels for the bar chart below. I know thi…
How do I estimate the risk of mortality after hospital disharge for specific time intervals when intervals are not of the same length?I want to estimate the risk of mortality after hospital disharge for specific time intervals. Is it …
Internal consitency for multilevel itemsDear Stata-users, I am looking for a way to calculate an index reflecting internal consistency of a…
ATT of did_imputation by Borusyak et al. 2021I know in case of csdid if I run the following regression then I'll get the ATT. Code: csdid ln_w…
Lowest Values in Entire GroupHello, Would appreciate some help please... Low 1-2-3-4- are the wanted columns here I need to gene…
Subscribe to:
Post Comments (Atom)
0 Response to Matching Panel Data to Diff-in-Diff
Post a Comment