Dear Stata Members
I have a question related to the interpretation and choosing the right model. Let me illucidate this with an example.

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input long entity int year float(borrowings wealth contro1 contro2)
   11 2011    .5504084   .3566245   .001049701           .
   11 2012    .5697871   .3026321    .04574671   .18446903
   11 2013    .5391156   .4967295    .14580062   .03579957
   11 2014   .51597077   .4602628    .10729927   .05016179
   11 2015    .4759782   .4324788    .08659865    .0874485
   11 2016    .4625662   .4278921   .071952224 .0022719898
   11 2017   .39045715   .4538369    .11401688   .09341507
   11 2018   .33070305   .4544985     .1488938   .08986207
   11 2019    .2839154   .4448069    .12172364   .12575735
  289 2011   .54094803   .3170305  -.035701364           .
  289 2012    .5555683   .4265102    .20956197    .2240876
  289 2013   .51333773  .43153745    .12207622   -.3072764
  289 2014   .48577145   .3902475     .0349044    -.087109
  363 2011    .4761355   .6830103    .10337277           .
  363 2012    .4731195    .635296    .06661269    .1102981
  363 2013   .53195494   .5600299    .04350695   -.3359406
  363 2014    .4994195   .4138399    .09209046   -.3629895
  363 2015   .51551414   .3602918    .04091703  .021681974
  363 2016    .5284721   .4900997    .06195928   .07478184
  363 2017    .5849603  .47596115    .04966863  -.14924355
  363 2018    .4416465   .3467005   .017113568    2.728524
  363 2019     .689352   .6998312   .010639434    -.661924
  414 2016    .4542443  .03726708   -.06832298           .
  414 2017  .006420134   .0480226   -.10297894    .3064353
  414 2018  .005577936  .05113108            0   -.3771344
  415 2018           .  .25162724   -.06337353           .
  415 2019           .    .273057    .23241054 -.023724906
  771 2013    .4651715  .29406333 -.0046174144           .
  771 2014    .5203515  .24431875   -.04403596    .3764192
  771 2015     .461695   .2143613    .02035333     .367132
  771 2016    .5473848   .1589128    -.1711411    .2298338
  771 2017    .5459776  .13162291    .02329034   .08634616
  771 2018    .4951338  .11822204  -.014577627 -.024664767
  771 2019    .4645513  .10804316    .09069066   .25544947
  783 2011   .19831736   .4684654    .11470844           .
  783 2012    .2092255   .4061761    .04089833    .2104566
  783 2013   .19775394   .3961418   .006883122   .14734472
  783 2014   .13007422    .366352    .08283698   .16174816
  783 2015   .08677534     .42655    .03452697 -.021924905
  783 2016  .033318035   .3804956    .07058284  .031698983
  783 2017  .025697127   .3541734    .07881384  -.03924384
  783 2018  .014560171   .3721915    .11289947   .03765883
  783 2019 .0009790963   .3375435     .0960983   .16825883
 1120 2011  .016338103   .2180963   .026797576           .
 1120 2012  .032134537   .2383646   .062702514   .22125916
 1120 2013   .08688986  .20360494     .0880451   .23629524
 1120 2014   .05394961   .1738267    .20202254    .1875501
 1120 2015   .03865692  .21615265     .1203531   .04958552
 1120 2016   .06567325  .24021226    .21261434  -.03890164
 1120 2017     .043705  .20884947     .0718712   .06808196
 1120 2018   .03458266  .18803462    .08242624   .09054825
 1120 2019  .031668555  .20853548    .04683747   .25766295
 2248 2017    .1482503   .4667431   .025896344           .
 2248 2018   .15626974  .48310015    .08627738   .09444503
 2717 2011    .3987688  .52997494    .14493908           .
 2717 2012    .5396248   .5388584    .15598004    .3650029
 2717 2013     .521483   .4544449    .19313775  .005588582
 2717 2014    .5139446   .4897545    .25459048   .18795657
 2717 2015    .4747386   .4586011    .24208185    .0889574
 2717 2016   .31001255  .45573065    .28510892   .17703804
 2717 2017   .26234335   .4712567    .18955813   .04058781
 2717 2018    .2209677   .7917002    .06728955    .5302293
 2717 2019   .19191967    .699398   .074500315    .3378055
 2842 2011   .24950735   .4182204     .3022586           .
 2842 2012    .3842184  .47379285    .03693084    .3031987
 2842 2013    .3622974   .5271885    .13663733    .2029563
 2842 2014    .3780394   .5113045   .013650713  -.04777961
 2842 2015    .3651952   .4876061    .08998302 -.017345913
 2842 2016   .19154836  .08928572   -.27983585    -.617762
 2842 2017  .012137886  .10746075     .3346093   .29977635
 2842 2018   .11468551  .09463358   .001154068   .01475289
 2842 2019    .1701168   .1248988   .032728113   .07911314
 3335 2011    .3992996  .26422244    .01107776           .
 3335 2012    .1974824  .19707473    .20451534    .7005484
 3335 2013   .15542907   .1971979     .1561734   .07927933
 3335 2014   .02286336   .2117583    .28621078   .08559263
 3335 2015  .028543843  .22432104    .04865046  -.12535256
 3335 2016   .03890818  .23201247     .1335648    .0577361
 3335 2017   .05525101   .2071913    .05593624    .1520042
 3335 2018   .10858244  .16878895    .04280683   .05487057
 3335 2019    .2077677  .25074002   -.07555885  .033351693
 3990 2011    .5109358   .4552348    .03000898           .
 3990 2015    .4456229  .44618005    .10405827           .
 3990 2016   .43831205   .4473882    .12087333  .037120655
 3990 2017    .4056455   .4878761    .14671211   .05311526
 3990 2018    .3955588   .4333314    .05018127    .0405465
 3990 2019    .3502277  .42918175    .09828218    .2551483
 3998 2011   .37776425  .29451075    .04358516           .
 3998 2012    .3780212  .26692954    .07272071    .1514226
 3998 2013   .39086115   .3095832    .10558873     .252045
 3998 2014    .3920296  .30943435    .11797553    .2572871
 3998 2015     .409129   .3290489    .11553278   .10464322
 3998 2016    .4354037   .4199662    .19333223  .033969022
 3998 2017    .4468606   .4847271    .13426812   .05140822
 3998 2018    .4743695     .45495    .07626183   .20373327
 3998 2019    .4099103  .36645475    .12567559   .09520283
 4024 2018    .4125189    .394467   .026686385           .
 4024 2019    .4504824   .4035377    .05246395  -.09097628
 4030 2016   .17944816  .14157945 -.0003805899           .
 4030 2017    .1738609  .08764988   .007434052    .3904321
 4030 2018   .03812203 .064700745  -.071587935   .13233668
 4030 2019   .07597651   .1156894    -.0385942   .18778832
 4253 2011    .8300624   .8171949    .09131072           .
 4253 2012     .794663   .8171949    .05564757  -.05502118
 4253 2013     .762911   .8171949     .1105419    .1615684
 4253 2014    .7336145   .8171949    .14773971  .071436204
 4253 2015     .674849   .8171949  -.031225424    .0270546
 4253 2016    .7137975   .8171949    .06298587  -.17491525
 4253 2017    .7916883   .8171949    .09623498   -.4737846
 4253 2018    .9276171   .8171949   .023376845  -.16493194
 4253 2019    1.276667   .8171949            .   -.4214988
 4671 2016    .3638019   .2761481  -.013762163           .
 4671 2017     .324754   .2852754     .1021458  .014223866
 4671 2018   .24909975   .2877043    .13253058   .06868943
 4671 2019    .1459749    .308847     .1335378    .1742925
 4709 2012    .6662203   .6266319    .12137921           .
 4709 2013    .6553847  .57591546    .11126392    .2181645
 4709 2014    .5561621   .5362483    .22304483   .15842493
 4709 2015   .54422885   .6040823    .11476488 -.020627577
 4709 2016    .5054402   .6772127    .07680175  -.03030659
 4709 2017    .4432106   .6758106     .1553518   .25886962
 4709 2018    .4445682   .6200479    .07567866 -.012173307
 4709 2019    .3930347   .5997105    .10580432   .14859356
 5003 2011   .10918014 .067195535    -.1498538           .
 5003 2012   .29134154   .1324779  -.008381018   .22241366
 5003 2013    .3004852   .1650631    .08418134   -.1807024
 5003 2014    .4097476   .1635043  -.005631727   .06136438
 5003 2015    .4219355  .14122625    .06564905   .15401855
 5003 2016    .5785052  .12588021    .03444713   .05206289
 5003 2017    .6178731   .0944237    .02023365 -.033344425
 5003 2018    .6006519   .0829053    .15445147 -.017999005
 5003 2019    .4547431  .04478376   .000997468   .12755749
 5284 2011  .018213866  .13102232    -.1010576           .
 5284 2012  .009815243  .13163972   .010969977    .4374999
 5284 2013   .01208981  .13356362 -.0011514105    .5177867
 5284 2014  .002744237  .12513721   -.05433589    .2369791
 5284 2015           .   .1036617  -.002578649   .25052634
 5284 2016  .002447381   .1977484     .1610377    .3619528
 5284 2017           .  .17095914    .04928952   .04697151
 5284 2018           .  .14962593  -.035743974  .031877268
 5284 2019  .013277693   .3118361   -.04666161  -.07551485
 5574 2011    .3480836  .34791905    .05428524           .
 5574 2012    .3784089  .44763595    .08859126   .11765777
 5574 2013   .39252335   .4043951    .02740591   .27299267
 5574 2014    .3991644   .3555488    .05839193    .3259429
 5574 2015    .4926058   .3930718    .04834897    .2213147
 5574 2016   .33564585   .3325015    .05280495    .3620269
 5574 2017    .3323925   .4069401    .02374232   .04540727
 5574 2018    .3418147   .4148635    .05816296    .0852675
 5574 2019    .3234833   .3989449    .07906775   .28092065
 5747 2011    .5204021  .26908726   .033249445           .
 5747 2012    .6293864   .3430454  .0043415455    .4871629
 5747 2013    .6302891  .44336635      .069693   .18247823
 5747 2014    .5998325   .5881558    .06856433    .1854033
 5747 2015    .6428508   .6448769   .065628156   .17358422
 5747 2016    .4589231  .25073498    .12238356   -.4735044
 5747 2017     .436603  .28550306    .01621231   .07667357
 5747 2018    .3116025   .1858569    .05198569  -.01696874
 5747 2019   .26978314  .20869975    .07715876   .12243346
 5757 2011    .6948834    .248067     .0539414           .
 5757 2012    .7510648     .30751    .01876402    .8895615
 5757 2013    .7640706  .53177357    .05485338    .6897347
 5757 2014    .7093325   .7449082    .05202026     1.30066
 5757 2015    .6998872   .7036348     .0908975   .21901853
 5757 2016    .6356643    .684512    .06319894   .34603485
 5757 2017    .6636555   .6877629    .05974928  -.10285632
 5757 2018    .7051849   .6931466    .06781821  -.09978237
 5757 2019    .6302482    .676382    .07526478    .1766577
 5838 2017    .1730994          .  -.007017544           .
 5838 2018   .12154696          .  -.025414364    1.244898
 5838 2019   .29709467          .      -.10403  -.52727276
 6584 2014           .   .1759436    .04661966           .
 6584 2015           .   .1658187    .09959914  -.00959966
 6584 2016  .006420786   .1776915    .04278035   .04078111
 6584 2017   .01701869   .1640328   .031530164   .01096856
 6584 2018    .0165893   .1560764     .0531923   .03746163
 6584 2019   .02165312  .13481045    .05877275   .22099447
 6585 2016       .3712      .1824            .           .
 6585 2017    .2507317        .52     .3346093    .1858407
 6585 2018    .0801282  .20352563    -.3121099 -.017910402
 6585 2019    .0673516  .25114155   -.06392694   .10638297
 6819 2011    .4224311   .3330956   .007585089           .
 6819 2013    .4634391   .2912299    .10310937           .
 6819 2014   .41481665  .28289443    .13677086   .08389007
 6819 2015    .2757323   .6763028     .1288173  -.06943109
 6819 2016   .22421573   .6315207      .206628    .3166479
 6819 2017   .09270376    .688632      .184104    .1264415
 6819 2018   .09099706   .6695513     .1580626   .17628655
 6819 2019   .04310589   .6096967     .1581862   .07187309
 6923 2013  .036216702   .3555073    .05436246           .
 6923 2014   .05898787  .24557114    .06654391  .018220207
 6923 2015  .001538993   .3057885  .0036747386   .04672977
 6923 2016 .0007068081  .26764217    .06067091   .05069383
 6923 2017   .08505154   .2234393  .0004295533   .08434212
 6923 2018   .17396885  .20319186   -.07876948   .05308232
 6923 2019   .13776949   .2279906     .1348017    .1045042
 7068 2011    .2255373   .4336084   .005005895           .
 7068 2012    .7127093  .08032516   -.04972092    1.466891
 7068 2013    .3287078  .29266456     .3346093   -.1084349
 7068 2014     .270276   .4778985    .09861256   .26408446
 7068 2015   .23166804  .48211685    .12995677   -.2216417
 7068 2016    .2082776   .5216338    .15304576    -.435073
 7068 2017   .14068018  .36748925    .06736894    .7755268
 7068 2018    .1372827    .579031      .095566   .21979836
 7068 2019    .0975527   .5428747     .2242033    .1722421
 7077 2011   .10389227   .3433261    .23245527           .
 7077 2012  .017583195  .41385415    .20946424  -.10656785
 7077 2013     .084119   .3831972   .013199246  -.02144102
 7077 2014    .0899088   .3787669    .10190325 .0003639672
 7077 2015    .1970248  .25454545   -.04181818  -.15655814
 7077 2016    .3171595  .20603964   -.09366153   .53256845
 7077 2017   .18523507   .5800278    .05884754 .0016043546
 7077 2018   .24368845   .5597058    .01153124 -.064409144
 7633 2013   .09921045  .27874687    .07949265           .
 7633 2014   .15525705  .22930136  -.006302178  -.56791306
 7633 2015    .1780412  .17021276   .074023396    .8443422
 7633 2016   .22957626  .16778368   -.13163535   .22928523
 7633 2017    .5346775  .14930987    .08845286   .25537586
 7633 2018    .4951785  .25245413     .3131383  .073266946
 7633 2019   .58521026  .20290634   -.11879278   -.1953571
 8183 2011           .   .1761822   -.15056667           .
 8183 2012           .   .2049998    .09631097 -.020935096
 8183 2013           .  .23560224    .05337045    .1179481
 8183 2014   .03893272   .3249325    .09123235 -.030428946
 8183 2015   .05951943   .3501657    .09422758  -.00829431
 8183 2016    .1848452   .3448189   -.03573223  .031699587
 8183 2017   .04137121   .4615638      .233529   .02830263
 8183 2018           .  .42928565     .1340962   .05503473
 8183 2019           .   .3720513    .06459869  .026408615
 8312 2011    .1763868  .17379667  -.014755018           .
 8312 2012   .21140324  .16629775  -.010693184   -.1752266
 8312 2013   .25428674  .14817181  -.009161734 -.007726851
 8312 2014    .2266215  .12879996    .01975407   -.3309977
 8312 2015   .16589355  .11615896    .08863278   .10346692
 8312 2016    .1230484   .1015561    .06620113    .1788599
 8312 2017  .072696775    .086017    .10198997    .1414302
 8312 2018   .02358453  .07827216    .06408186    .1542464
 8312 2019   .04078949  .06777557    .05722944   .06567483
 8523 2014  .024087144  .07042038    .17674133           .
 8523 2015  .025539907   .0912676  .0037558686   .17436044
 8523 2016 .0007068081  .06780822  -.004452055    -.419557
 8523 2017  .012088436  .11468108    .10831875  .033965785
 8523 2018  .017797846   .1888697    -.0114225   .11304883
 8523 2019  .007172038  .15152065    .09060372    .8392238
 8628 2017   .25019747   .3013428     -.192733           .
 8628 2018    .1524776   .5681978    .01728817   .28799444
 8628 2019   .11357084   .5739292    .06600082    .3025323
 8893 2011    .3596167   .4037388    .17990266           .
 8893 2012   .30688825   .3783531     .1176579    .3570038
 8893 2013    .1736542   .3791348     .3258868    .3768252
 8893 2014   .13743457   .2942589     .2237248    .2974286
 8893 2015   .06304603  .25093853     .2433866   .22018386
 8893 2016   .06197859   .3005768     .2174919    .1767114
 8893 2017  .003652219  .31597325     .3267636    .1437075
 8893 2018  .001664384   .4252501    .11356594   .07165918
 8893 2019   .01824345    .392895    .12594202  -.03296312
 9395 2011   .11527894  .05111475   -.17566568           .
 9395 2012    .3116961   .2571288    .11172533   .53606766
 9395 2013    .3572313  .19746792            .   .52544016
 9395 2014     .457702  .26060873 -.0010054614    .4435892
 9395 2015   .36436895  .22284608    .11592472   -.3819741
 9395 2016    .3786785   .2689725    .18334247  -.24169537
 9395 2017    .3189563  .17134063    .08574134  -.19534147
 9395 2018    .3941053  .10244358  -.026210876  -.53725356
 9395 2019    .3029013  .04506692    .08439115    .6438882
 9505 2016     .152146   .1488664    .23484957           .
 9505 2017   .06109492  .12531224    .04964613   .28230104
 9505 2018    .1964527  .10190892   -.18758455    .4303546
 9505 2019     .163536  .07547297 -.0082811555  -.42026055
 9793 2011   .21299487  .28313547   -.22727828           .
 9793 2012    .2090286   .2395759    .14652154   1.0828497
 9793 2013   .16243246  .19548473  -.008869908  -.07691464
 9793 2014   .22626795  .16880143   .009572013  -.05456925
 9793 2015    .2123294  .18939278    .04043563   .49040115
 9793 2016   .15408486   .1600095    .05747928   .25603876
 9793 2017    .1957748  .15506345    .10892046   .08424038
 9793 2018    .2839797  .26066253   .027858667   .26903573
 9793 2019    .3059011  .24024113    .08634496  -.13823473
10714 2011    .3242179   .4018814    .12119886           .
10714 2012    .3694196   .4118304    .05022321  -.08740239
10714 2013    .3186611   .4636268      .170796   .14660251
10714 2014   .22189525  .47969395     .0985874    .2188521
10714 2015    .1945914   .4244562      .058495  .007656967
10714 2016   .27926573   .3969305   -.02888956  .013297872
10714 2017    .1778991   .5967621   -.04951054  -.03787029
10714 2018   .11722489   .4629187 .00014952154    .8024161
10714 2019   .11691818   .4826052  -.026846703    .3995675
10735 2018   .56434965  .01147052    -.2837807           .
10735 2019    .4761131 .007799805   -.04029899    .1811359
10867 2018    .0938887 .005804029   -.11027654           .
10867 2019    .1117432 .002844372    -.3063795           .
10884 2015   .24478763   .2576126    .06100572           .
10884 2016    .1184179   .2610669    .13072436   .32687995
10884 2017    .0985217   .2684734   .070385665    .1563039
10884 2018   .12456716   .2851561   .033220906   .12491638
10884 2019   .10957008   .2936864    .09048726    .6531112
10903 2011    .4359254   .3555144    .08894213           .
10903 2012    .4086082   .4047706    .11770933   .22337973
10903 2013    .3936641   .3400377    .06047452   .26664123
10903 2014    .3441462   .3536265    .10754997    .2224479
end

Code:
**For Classical DID
*Treatment group based on wealth
bysort entity (year): egen avg_weal=mean( wealth) if inrange(year,2011,2015) // considering year till 2015 only
bysort entity (year): egen max_avg_weal=max(avg_weal )
xtile tercile=max_avg_weal, nq(3)
gen treat=1 if tercile==3
replace treat=0 if tercile==1
** Time dummy
gen time_dum=1 if year>2016
replace time_dum=0 if year<2017
**Setting the panel
xtset entity year
Code:
 *Running DiD
. xtreg borrowings treat##time_dum contro1 contro2,fe vce(robust)
note: 1.treat omitted because of collinearity.

Fixed-effects (within) regression               Number of obs     =        147
Group variable: entity                          Number of groups  =         21

R-squared:                                      Obs per group:
     Within  = 0.2162                                         min =          4
     Between = 0.2142                                         avg =        7.0
     Overall = 0.0121                                         max =          8

                                                F(4,20)           =      16.24
corr(u_i, Xb) = -0.3319                         Prob > F          =     0.0000

                                  (Std. err. adjusted for 21 clusters in entity)
--------------------------------------------------------------------------------
               |               Robust
    borrowings | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
---------------+----------------------------------------------------------------
       1.treat |          0  (omitted)
    1.time_dum |   .0364757   .0405352     0.90   0.379    -.0480793    .1210307
               |
treat#time_dum |
          1 1  |  -.1493665   .0572354    -2.61   0.017    -.2687576   -.0299755
               |
       contro1 |  -.0110076   .0712315    -0.15   0.879     -.159594    .1375788
       contro2 |  -.0205239   .0143762    -1.43   0.169    -.0505121    .0094643
         _cons |   .3411113   .0143873    23.71   0.000     .3111001    .3711226
---------------+----------------------------------------------------------------
       sigma_u |   .2453684
       sigma_e |   .0864247
           rho |  .88963071   (fraction of variance due to u_i)
--------------------------------------------------------------------------------



. **Running Panel Regression
. xtreg borrowings time_dum##c.wealth contro1 contro2,fe vce(robust)

Fixed-effects (within) regression               Number of obs     =        239
Group variable: entity                          Number of groups  =         42

R-squared:                                      Obs per group:
     Within  = 0.0905                                         min =          1
     Between = 0.2895                                         avg =        5.7
     Overall = 0.1388                                         max =          8

                                                F(5,41)           =       1.10
corr(u_i, Xb) = 0.2677                          Prob > F          =     0.3728

                                     (Std. err. adjusted for 42 clusters in entity)
-----------------------------------------------------------------------------------
                  |               Robust
       borrowings | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
------------------+----------------------------------------------------------------
       1.time_dum |  -.0052656   .0575536    -0.09   0.928    -.1214975    .1109664
           wealth |   .1133002   .2026015     0.56   0.579    -.2958618    .5224622
                  |
time_dum#c.wealth |
               1  |  -.1294753    .145374    -0.89   0.378    -.4230642    .1641135
                  |
          contro1 |  -.1193711   .1043477    -1.14   0.259    -.3301056    .0913634
          contro2 |   .0095745    .030367     0.32   0.754    -.0517528    .0709019
            _cons |   .2812199   .0701817     4.01   0.000     .1394851    .4229547
------------------+----------------------------------------------------------------
          sigma_u |  .18978849
          sigma_e |  .09432048
              rho |  .80193364   (fraction of variance due to u_i)
---------------------------------------------------------------------------------
--





As far as I understood the interpretation of DID involves, 14.93% change in dependent variable of those entities that has highest wealth relative to those entities with lower wealth in the post-period.
In panel regression, it means as the wealth increases in the post_period, then borrowings get reduced by 12.94%.
But what is that intuition of the difference in models? For instance treatment and control groups are created based on wealth and both implies that as wealth increases, borrowings decrease. But how EXACTLY IS MODEL 1 (DiD) different from Panel regression.