Dear Statalister,

I have an unbalanced panel dataset for 5817 (N) firms per 8 years (T). I'm running a random effect model where my Y is time variant across id and across years, while the Xs are time variant except for one ( a dummy if the firm is foreign owned 1, 0 otherwise).

My main indepent predictor is Market potential measure at the district level, weighted both for the population and for the population with a HE degree.

However before choosing the RE model, I did the classical Hausman test testing a FE vs RE effect model, however I got the error posted below: as I know, in principle you choose a RE when you are interested in the effect of a time invariant variable which you don't want to be absorbed by a fixed effect, still for completion I wanted to test the validity of this. The theory to which I refer to mostly use OLS or FE model using industry and time dummies, therefore I don't get the huge difference between a RE model with all these fixed effects and a FE model. To be completerly clear I tested with Hausman, - xtoverid and testparm i.year to check whether variation across years made sense and yes they do (coefficients = 0 and p value = 0.000). I don't post it to avoid unnecessary long post.

I also read all the threads about the this but still I cant' get my head around it.

All the models tested had robust errors clustered at the firm and district level but in order to test HAUSMAN I tooke them away and used xtoverid instead, which is not the real issue at hand right now.

Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input long id int year str81 oa11cd double tuemp float(lmpgenOA lmpheOA capempl forown) double cost_sales
1225 2012 "E00168192" 2273233.39658444 9.132033 8.421536 .55452245 0 -3303.433
 403 2018 "E00000007" 1990078.66108787 9.065825 9.269802  5.070008 0 -1957.633
1225 2013 "E00168192" 1434669.76744186 9.132033 8.421536  .6686352 0 -1907.644
 403 2017 "E00000007" 1762047.00162075 9.065825 9.271615 4.5478215 0 -1796.352
 403 2016 "E00000007" 1618102.15482841 9.065825 9.274349  3.947793 0  -1621.86
 466 2017 "E00174692" 445506.745817593 7.933118 8.937097 .17657636 0 -1594.043
 466 2019 "E00174692" 462221.467006514 7.933118 8.926232  .2028176 0 -1579.259
 466 2018 "E00174692" 458740.962140621 7.933118 8.933418 .20365784 0  -1547.68
 331 2012 "E00004701" 559875.518672199 8.006558  8.54924  .1146307 0     -1534
 146 2018 "E00166755"          1961920 11.81126  11.8221  .3007664 1 -1486.374
end
label values id firmid
label def firmid 146 "GB00594001", modify
label def firmid 331 "GB00975677", modify
label def firmid 403 "GB01090741", modify
label def firmid 466 "GB01207120", modify
label def firmid 1225 "GB02433585", modify
Code:
xtreg ltuemp lmpgenOA lmpheOA capempl forown cost_sales size1 i.industry1 i.year i.lad, fe
note: forown omitted because of collinearity
note: 2.industry1 omitted because of collinearity
note: 3.industry1 omitted because of collinearity
note: 4.industry1 omitted because of collinearity
note: 5.industry1 omitted because of collinearity
note: 6.industry1 omitted because of collinearity
note: 7.industry1 omitted because of collinearity
note: 2.lad omitted because of collinearity
note: 3.lad omitted because of collinearity
note: 4.lad omitted because of collinearity
note: 8.lad omitted because of collinearity
note: 10.lad omitted because of collinearity
note: 11.lad omitted because of collinearity
note: 13.lad omitted because of collinearity
note: 14.lad omitted because of collinearity
note: 16.lad omitted because of collinearity
note: 17.lad omitted because of collinearity
note: 18.lad omitted because of collinearity
note: 20.lad omitted because of collinearity
note: 21.lad omitted because of collinearity
note: 22.lad omitted because of collinearity
note: 23.lad omitted because of collinearity
note: 24.lad omitted because of collinearity
note: 25.lad omitted because of collinearity
note: 26.lad omitted because of collinearity
note: 27.lad omitted because of collinearity
note: 29.lad omitted because of collinearity
note: 30.lad omitted because of collinearity
note: 31.lad omitted because of collinearity
note: 32.lad omitted because of collinearity
note: 33.lad omitted because of collinearity

Fixed-effects (within) regression               Number of obs     =     25,149
Group variable: id                              Number of groups  =      4,091

R-sq:                                           Obs per group:
     within  = 0.0340                                         min =          1
     between = 0.0559                                         avg =        6.1
     overall = 0.0545                                         max =          8

                                                F(20,21038)       =      37.05
corr(u_i, Xb)  = -0.0296                        Prob > F          =     0.0000

-----------------------------------------------------------------------------------------
                 ltuemp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------------+----------------------------------------------------------------
               lmpgenOA |  -.0938133     .15202    -0.62   0.537    -.3917841    .2041576
                lmpheOA |  -.0652593   .0681192    -0.96   0.338    -.1987781    .0682596
                capempl |   .0089819   .0006072    14.79   0.000     .0077918    .0101721
                 forown |          0  (omitted)
             cost_sales |  -.0021398   .0001144   -18.71   0.000     -.002364   -.0019157
                  size1 |   .0699393   .0087211     8.02   0.000     .0528453    .0870333
                        |
              industry1 |
          Construction  |          0  (omitted)
             Logistics  |          0  (omitted)
         Manufacturing  |          0  (omitted)
                Others  |          0  (omitted)
                   R&D  |          0  (omitted)
  wholesale and retail  |          0  (omitted)
                        |
                   year |
                  2013  |    .032932   .0132008     2.49   0.013     .0070574    .0588067
                  2014  |   .0369939   .0130772     2.83   0.005     .0113615    .0626263
                  2015  |    .060668    .013114     4.63   0.000     .0349634    .0863725
                  2016  |   .0691917   .0131206     5.27   0.000     .0434743    .0949092
                  2017  |   .0886862   .0132313     6.70   0.000     .0627519    .1146206
                  2018  |   .0995565   .0133961     7.43   0.000      .073299    .1258139
                  2019  |   .1163816   .0182189     6.39   0.000     .0806711    .1520921
                        |
                    lad |
                Barnet  |          0  (omitted)
                Bexley  |          0  (omitted)
                 Brent  |          0  (omitted)
               Bromley  |  -.2900522   .5408589    -0.54   0.592    -1.350177    .7700727
                Camden  |  -.1497671    .704691    -0.21   0.832    -1.531016    1.231481
        City of London  |   .7345571   .8806155     0.83   0.404    -.9915169    2.460631
               Croydon  |          0  (omitted)
                Ealing  |   -.392667   .7541058    -0.52   0.603    -1.870772    1.085438
               Enfield  |          0  (omitted)
             Greenwich  |          0  (omitted)
               Hackney  |  -.8681928   .9271746    -0.94   0.349    -2.685526    .9491405
Hammersmith and Fulham  |          0  (omitted)
              Haringey  |          0  (omitted)
                Harrow  |  -1.099072   .7116874    -1.54   0.123    -2.494034    .2958902
              Havering  |          0  (omitted)
            Hillingdon  |          0  (omitted)
              Hounslow  |          0  (omitted)
             Islington  |  -.0945124   .7519595    -0.13   0.900    -1.568411    1.379386
Kensington and Chelsea  |          0  (omitted)
  Kingston upon Thames  |          0  (omitted)
               Lambeth  |          0  (omitted)
              Lewisham  |          0  (omitted)
                Merton  |          0  (omitted)
                Newham  |          0  (omitted)
             Redbridge  |          0  (omitted)
  Richmond upon Thames  |          0  (omitted)
             Southwark  |  -.4545496   .8367965    -0.54   0.587    -2.094735    1.185636
                Sutton  |          0  (omitted)
         Tower Hamlets  |          0  (omitted)
        Waltham Forest  |          0  (omitted)
            Wandsworth  |          0  (omitted)
           Westminster  |          0  (omitted)
                        |
                  _cons |   13.19484    1.01411    13.01   0.000      11.2071    15.18257
------------------------+----------------------------------------------------------------
                sigma_u |  1.3506759
                sigma_e |   .4966646
                    rho |  .88089059   (fraction of variance due to u_i)
-----------------------------------------------------------------------------------------
F test that all u_i=0: F(4090, 21038) = 35.64                Prob > F = 0.0000

est store fe

 xtreg ltuemp lmpgenOA lmpheOA capempl forown cost_sales size1 i.industry1 i.year i.lad, re

Random-effects GLS regression                   Number of obs     =     25,149
Group variable: id                              Number of groups  =      4,091

R-sq:                                           Obs per group:
     within  = 0.0325                                         min =          1
     between = 0.2410                                         avg =        6.1
     overall = 0.2355                                         max =          8

                                                Wald chi2(51)     =    1995.62
corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

-----------------------------------------------------------------------------------------
                 ltuemp |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------------+----------------------------------------------------------------
               lmpgenOA |  -.0859057   .0251848    -3.41   0.001     -.135267   -.0365444
                lmpheOA |   .0815867   .0225095     3.62   0.000      .037469    .1257044
                capempl |   .0106728   .0005328    20.03   0.000     .0096285    .0117171
                 forown |    .231343   .0385795     6.00   0.000     .1557287    .3069573
             cost_sales |  -.0023917    .000106   -22.57   0.000    -.0025995    -.002184
                  size1 |   .1316934   .0081154    16.23   0.000     .1157876    .1475993
                        |
              industry1 |
          Construction  |   .5043068   .0769176     6.56   0.000     .3535512    .6550625
             Logistics  |   .1817653   .1153128     1.58   0.115    -.0442437    .4077743
         Manufacturing  |   .2062247   .0911777     2.26   0.024     .0275197    .3849297
                Others  |  -.4832861   .0474155   -10.19   0.000    -.5762187   -.3903534
                   R&D  |  -.4489571   .2482047    -1.81   0.070    -.9354295    .0375153
  wholesale and retail  |   .6985405   .0564901    12.37   0.000     .5878218    .8092591
                        |
                   year |
                  2013  |   .0315211   .0132515     2.38   0.017     .0055487    .0574936
                  2014  |   .0334569   .0129714     2.58   0.010     .0080333    .0588804
                  2015  |   .0557066   .0128702     4.33   0.000     .0304814    .0809318
                  2016  |   .0656223   .0128763     5.10   0.000     .0403852    .0908593
                  2017  |   .0876851    .013092     6.70   0.000     .0620253     .113345
                  2018  |   .0985067   .0133509     7.38   0.000     .0723394    .1246741
                  2019  |   .1274615   .0180757     7.05   0.000     .0920338    .1628892
                        |
                    lad |
                Barnet  |  -.4041992   .2943551    -1.37   0.170    -.9811245    .1727261
                Bexley  |  -.4295678   .3678848    -1.17   0.243    -1.150609    .2914731
                 Brent  |  -.0348001   .3083596    -0.11   0.910    -.6391739    .5695737
               Bromley  |  -.1309259   .3161117    -0.41   0.679    -.7504934    .4886416
                Camden  |  -.1044641   .2709851    -0.39   0.700    -.6355851    .4266569
        City of London  |    .096831   .2767392     0.35   0.726    -.4455679    .6392299
               Croydon  |  -.0945046   .3074663    -0.31   0.759    -.6971275    .5081183
                Ealing  |    .042697   .2994096     0.14   0.887     -.544135     .629529
               Enfield  |  -.2932872   .3209769    -0.91   0.361    -.9223903    .3358159
             Greenwich  |  -.5613284   .3651217    -1.54   0.124    -1.276954    .1542971
               Hackney  |   -.171142   .3144232    -0.54   0.586    -.7874002    .4451162
Hammersmith and Fulham  |   -.291473   .2908778    -1.00   0.316     -.861583     .278637
              Haringey  |  -.1314029   .3726172    -0.35   0.724    -.8617193    .5989135
                Harrow  |   .1846775   .3012802     0.61   0.540    -.4058207    .7751758
              Havering  |   .0261472   .3316642     0.08   0.937    -.6239026    .6761971
            Hillingdon  |  -.1525145   .2830821    -0.54   0.590    -.7073453    .4023162
              Hounslow  |   .1601133   .2899418     0.55   0.581    -.4081621    .7283887
             Islington  |  -.1997624    .274643    -0.73   0.467    -.7380527    .3385279
Kensington and Chelsea  |  -.1181314   .2888664    -0.41   0.683    -.6842991    .4480363
  Kingston upon Thames  |  -.1546803   .3191289    -0.48   0.628    -.7801614    .4708009
               Lambeth  |  -.1992022   .3160978    -0.63   0.529    -.8187426    .4203382
              Lewisham  |  -1.018139   .3848164    -2.65   0.008    -1.772365   -.2639127
                Merton  |  -.0995425   .3314845    -0.30   0.764    -.7492402    .5501551
                Newham  |  -.0542702   .3401734    -0.16   0.873    -.7209979    .6124575
             Redbridge  |     .39405   .3720598     1.06   0.290    -.3351737    1.123274
  Richmond upon Thames  |  -.0310623   .3072969    -0.10   0.919    -.6333532    .5712287
             Southwark  |  -.1837637   .2786828    -0.66   0.510     -.729972    .3624446
                Sutton  |  -.0537442   .3736738    -0.14   0.886    -.7861314    .6786431
         Tower Hamlets  |  -.0557447   .2797957    -0.20   0.842    -.6041342    .4926447
        Waltham Forest  |   .5709957   .3773261     1.51   0.130    -.1685499    1.310541
            Wandsworth  |  -.6133194   .3097433    -1.98   0.048    -1.220405   -.0062336
           Westminster  |    .006925   .2687566     0.03   0.979    -.5198283    .5336783
                        |
                  _cons |   11.68975   .2939594    39.77   0.000      11.1136     12.2659
------------------------+----------------------------------------------------------------
                sigma_u |  1.1483457
                sigma_e |   .4966646
                    rho |  .84241734   (fraction of variance due to u_i)
-----------------------------------------------------------------------------------------

. est store re

. hausman fe re

Note: the rank of the differenced variance matrix (19) does not equal the number of coefficients being tested (20); be sure this is what you expect, or
        there may be problems computing the test.  Examine the output of your estimators for anything unexpected and possibly consider scaling your
        variables so that the coefficients are on a similar scale.

                 ---- Coefficients ----
             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
             |       fe           re         Difference          S.E.
-------------+----------------------------------------------------------------
    lmpgenOA |   -.0938133    -.0859057       -.0079076        .1499193
     lmpheOA |   -.0652593     .0815867        -.146846        .0642927
     capempl |    .0089819     .0106728       -.0016909        .0002912
  cost_sales |   -.0021398    -.0023917        .0002519         .000043
       size1 |    .0699393     .1316934       -.0617541        .0031934
        year |
       2013  |     .032932     .0315211        .0014109               .
       2014  |    .0369939     .0334569         .003537          .00166
       2015  |     .060668     .0557066        .0049614        .0025171
       2016  |    .0691917     .0656223        .0035695        .0025204
       2017  |    .0886862     .0876851        .0010011         .001915
       2018  |    .0995565     .0985067        .0010498        .0010994
       2019  |    .1163816     .1274615         -.01108        .0022801
         lad |
          5  |   -.2900522    -.1309259       -.1591264        .4388642
          6  |   -.1497671    -.1044641        -.045303        .6505048
          7  |    .7345571      .096831        .6377261        .8360018
          9  |    -.392667      .042697        -.435364        .6921196
         12  |   -.8681928     -.171142       -.6970508        .8722332
         15  |   -1.099072     .1846775       -1.283749        .6447707
         19  |   -.0945124    -.1997624        .1052499        .7000103
         28  |   -.4545496    -.1837637       -.2707859        .7890274
------------------------------------------------------------------------------
                           b = consistent under Ho and Ha; obtained from xtreg
            B = inconsistent under Ha, efficient under Ho; obtained from xtreg

    Test:  Ho:  difference in coefficients not systematic

                 chi2(19) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                          =      410.47
                Prob>chi2 =      0.0000
                (V_b-V_B is not positive definite)

Of course the dummy forown and other time and industry dummies were removed from the fixed effect, but it is something I have to control for standing by the literature.

I add that before I tried these:

Code:
xtreg ltuemp lmpgenOA lmpheOA capempl forown cost_sales, fe
est store fe
xtreg ltuemp lmpgenOA lmpheOA capempl forown cost_sales, re
est store re

hausman fe re
And the test worked just fine, but it is not the kind of model tested in the literature and it might result incomplete and biased.
I also tested my XTREG , RE vs POOLED OLS using
Code:
 - testparm i.year
and according to the test POOLED OLS is not a choice as all year dummies were = 0 and p values was 0.000

Moreover I also used xtoverid after the xtreg , re (it is not possible after xtreg, fe but I don't know why).
Can someone help me?


Thanks

Dalila