I am using SEM to estimate an autoregressive model:
Code:
sem (r9cesdnmv2 <- relwmo2v2c) (r10cesdnmv2 <- r9cesdnmv2) /// (r11cesdnmv2 <- r10cesdnmv2) (r12cesdnmv2 <- r11cesdnmv2) /// (r13cesdnmv2 <- r12cesdnmv2) (r14cesdnmv2 <- r13cesdnmv2)
Code:
Endogenous variables Observed: r9cesdnmv2 r10cesdnmv2 r11cesdnmv2 r12cesdnmv2 r13cesdnmv2 r14cesdnmv2 Exogenous variables Observed: relwmo2v2c Fitting target model: Iteration 0: log likelihood = -36612.044 Iteration 1: log likelihood = -36612.044 Structural equation model Number of obs = 3,124 Estimation method = ml Log likelihood = -36612.044 ----------------------------------------------------------------------------------- | OIM | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- Structural | r9cesdnmv2 | relwmo2v2c | -.4159013 .0773182 -5.38 0.000 -.5674421 -.2643604 _cons | 1.51768 .0680087 22.32 0.000 1.384386 1.650975 ----------------+---------------------------------------------------------------- r10cesdnmv2 | r9cesdnmv2 | .520521 .0147684 35.25 0.000 .4915755 .5494665 _cons | .5202732 .0321207 16.20 0.000 .4573178 .5832286 ----------------+---------------------------------------------------------------- r11cesdnmv2 | r10cesdnmv2 | .5672095 .0147685 38.41 0.000 .5382637 .5961553 _cons | .5198662 .03115 16.69 0.000 .4588134 .5809191 ----------------+---------------------------------------------------------------- r12cesdnmv2 | r11cesdnmv2 | .5626509 .0152267 36.95 0.000 .5328072 .5924947 _cons | .5534209 .0323615 17.10 0.000 .4899935 .6168483 ----------------+---------------------------------------------------------------- r13cesdnmv2 | r12cesdnmv2 | .5448257 .0153369 35.52 0.000 .514766 .5748855 _cons | .6105855 .0334158 18.27 0.000 .5450917 .6760793 ----------------+---------------------------------------------------------------- r14cesdnmv2 | r13cesdnmv2 | .5806416 .0149033 38.96 0.000 .5514317 .6098516 _cons | .5624245 .0333205 16.88 0.000 .4971174 .6277315 ------------------+---------------------------------------------------------------- var(e.r9cesdnmv2)| 3.270004 .0827385 3.111794 3.436256 var(e.r10cesdnmv2)| 2.248683 .0568968 2.139887 2.36301 var(e.r11cesdnmv2)| 2.141471 .0541841 2.037862 2.250347 var(e.r12cesdnmv2)| 2.283458 .0577767 2.17298 2.399553 var(e.r13cesdnmv2)| 2.411332 .0610122 2.294667 2.533929 var(e.r14cesdnmv2)| 2.349016 .0594354 2.235366 2.468444 ----------------------------------------------------------------------------------- LR test of model vs. saturated: chi2(15) = 1850.63, Prob > chi2 = 0.0000
Thanks!
Alice
0 Response to Margins after SEM
Post a Comment