I am running a parametric survival model with a lognormal distribution. My dataset is a firm-year panel. Firms are observed every year from inception until either they experience the event (coded as 1) or the time window of the study ends (coded as 0).
I am interested to estimate average margins effects at the means (MEMs) for my independent variable which is a categorical variable (firm location) assuming 3 potential values (0=urban; 1=suburban; 2=rural) on the dependent one (firm survival). I also have a time-variant control in my model. I obtain the following results from my analysis:
Code:
. streg control1 i.firm_location,vce(robust) d(lognormal) time
failure _d: failed1 == 1
analysis time _t: (year-origin)
origin: time cohort
id: FAD_F_Id
Fitting constant-only model:
Iteration 0: log pseudolikelihood = -16363.037
Iteration 1: log pseudolikelihood = -15818.866
Iteration 2: log pseudolikelihood = -15780.064
Iteration 3: log pseudolikelihood = -15779.955
Iteration 4: log pseudolikelihood = -15779.955
Fitting full model:
Iteration 0: log pseudolikelihood = -15779.955
Iteration 1: log pseudolikelihood = -15711.05
Iteration 2: log pseudolikelihood = -15710.045
Iteration 3: log pseudolikelihood = -15710.045
Lognormal AFT regression
No. of subjects = 11,773 Number of obs = 50,000
No. of failures = 8,559
Time at risk = 50000
Wald chi2(3) = 105.31
Log pseudolikelihood = -15710.045 Prob > chi2 = 0.0000
(Std. Err. adjusted for 11,773 clusters in FAD_F_Id)
-------------------------------------------------------------------------------
| Robust
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
control1 | .1205071 .0173318 6.95 0.000 .0865374 .1544769
|
firm_location |
suburban | -.1840696 .0359398 -5.12 0.000 -.2545103 -.1136288
rural | .1961607 .0793339 2.47 0.013 .0406691 .3516523
|
_cons | 1.34495 .040215 33.44 0.000 1.26613 1.42377
--------------+----------------------------------------------------------------
/lnsigma | .0567524 .0062428 9.09 0.000 .0445167 .0689882
--------------+----------------------------------------------------------------
sigma | 1.058394 .0066074 1.045522 1.071424
-------------------------------------------------------------------------------
.
. margins firm_location, atmeans
Adjusted predictions Number of obs = 50,000
Model VCE : Robust
Expression : Predicted median _t, predict()
at : control1 = 1.24962 (mean)
0.firm_loc~n = .10254 (mean)
1.firm_loc~n = .86862 (mean)
2.firm_loc~n = .02884 (mean)
-------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
firm_location |
urban | 4.461736 .154031 28.97 0.000 4.15984 4.763631
suburban | 3.711619 .0426361 87.05 0.000 3.628054 3.795185
rural | 5.428694 .3888111 13.96 0.000 4.666638 6.190749
-------------------------------------------------------------------------------
.
. margins r.firm_location, atmeans
Contrasts of adjusted predictions Number of obs = 50,000
Model VCE : Robust
Expression : Predicted median _t, predict()
at : control1 = 1.24962 (mean)
0.firm_loc~n = .10254 (mean)
1.firm_loc~n = .86862 (mean)
2.firm_loc~n = .02884 (mean)
--------------------------------------------------------
| df chi2 P>chi2
---------------------+----------------------------------
firm_location |
(suburban vs urban) | 1 22.50 0.0000
(rural vs urban) | 1 5.37 0.0205
Joint | 2 40.78 0.0000
--------------------------------------------------------
----------------------------------------------------------------------
| Delta-method
| Contrast Std. Err. [95% Conf. Interval]
---------------------+------------------------------------------------
firm_location |
(suburban vs urban) | -.7501162 .1581513 -1.060087 -.4401454
(rural vs urban) | .966958 .4174105 .1488485 1.785068
----------------------------------------------------------------------the median survival time for suburban firms, compared with urban firms, is, on average, 75 percentage points lower. Conversely, the median survival time for rural firms, compared with urban firms, is, on average, 97 percentage points higher.
I would also be interested to provide what I believe to be a more straightforward interpretation using the results from the adjusted predictions. I would do so in the following way:
on average, the median survival time of suburban firms is 17% lower than the one of urban firms. Conversely, the median survival time of rural firms is 22% higher than the one of urban firms.
Would you agree with these interpretations?
Thanks in advance,
Giuseppe
0 Response to Help with the interpretation of margins effects at the means and adjusted predicted values for parametric survival models
Post a Comment