Bellow is a (simplified) sample of my dataset and the (simplified) regression I would like to run.
Code:
clear input int dt byte(d_pc dt_typeA dt_typeB dt_typeA_pre1 dt_typeA_pre2 dt_typeA_pre3 dt_typeA_pos1 dt_typeA_pos2 dt_typeA_pos3 dt_typeB_pre1 dt_typeB_pre2 dt_typeB_pre3 dt_typeB_pos1 dt_typeB_pos2 dt_typeB_pos3 pick) 16815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16834 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16835 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16836 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16851 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16853 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16861 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 16863 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 16866 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16868 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16877 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16898 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16911 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 16913 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16918 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 16919 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 16924 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 16941 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16944 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16961 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16968 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16979 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16992 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17013 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17034 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17044 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17049 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17053 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17065 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17086 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17090 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17091 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17097 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17120 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17139 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17146 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17151 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17162 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 17181 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17182 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17195 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17200 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17212 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 17219 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 17225 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17230 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17234 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17247 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17259 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 17269 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17270 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17279 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17284 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 17285 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 17295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17307 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17316 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17322 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17336 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17348 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17354 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17357 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17360 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17381 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17390 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17411 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17411 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17431 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17467 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17472 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17475 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 17476 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 17477 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 17477 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 17491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17500 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17507 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17511 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17514 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17516 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17521 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17525 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 17526 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 end format %td dt reg d_pc dt_typeA - dt_typeB_pos3
I only managed to do this separately for each type with -coefplot-. I think I am missing something as the code below doesn't seem to be the most logical way to go.
Code:
local var_list dt_typeA_pre3 dt_typeA_pre2 dt_typeA_pre1 dt_typeA dt_typeA_pos1 dt_typeA_pos2 dt_typeA_pos3 coefplot, vertical drop(_cons) keep(`var_list') order(`var_list') coeflabels(dt_typeA_pre3="-3d" dt_typeA_pre2="-2d" dt_typeA_pre1="-1d" dt_typeA="0" dt_typeA_pos1="+1d" dt_typeA_pos2="+2d" dt_typeA_pos3="+3d")
0 Response to Event study graph for multiple coefficients
Post a Comment