Dear Stata users,
I have estimated the VAR(1) model of the form: zt+1=a + Γzt+ ut+1
Where zt+1 is m-by-1 state vector with rt+1 as the first element (log excess market return) , a and Γ are m-by-1 vector and m-by-m matrix of constant parameters and ut+1 an i.i.d. m-by-1 vector of shocks. I have obtained my VAR parameters estimates, but for my next computations I need to back out all the ut+1 error terms (for 877 montly observations), to obtain:
NCF, t+1=(e1'+e1'λ)ut+1
and
NDR, t+1=e1'λut+1
where e1' is supposed to pick the first element of λ and should capture the long run siginificance of each individual VAR shock to discount rate expectations (e1'λ). The greater the absolute value of variable's coefficient in the return prediction equation (top row of Γ) the greater the weight the variable receives in the discount rate formula.
and λ=pΓ(I-pΓ)-1 with p=0,951/12 and I= identity matrix
State vector variables are R_Me (log excess market return), TY (term yield), PE (price earings ratio), VS (value spread)
How can I obtain error terms for each montly observation separately? Is there a way to back out the ut+1 from VAR estimation procedure? I attach the example of my data set.
Any help will be much appreciated!
* Example generated by -dataex-. To install: ssc install dataex clear input long Date double(R_Me TY PE VS EtR_Me N_dr N_cf Rrf FFS2BM1 FFS3BM1 FFS4BM1 FFS5BM1 FFS5BM5 RISK10 RISK14 RISK17 RISK19) 199011 .058061626 .67 2.9222078 1.6413188 .0035540038 .062132986 -.0076253644 .005849983 .1183 .1051 .0897 .0646 .0435 .12173959 .10203556 .036494877 .095742293 199012 .023693474 .75 2.9608154 1.6537005 .0090106973 .0178459 -.003163123 .005433334 .0435 .0645 .042 .0325 .0079 .05887135 .048686188 .023024607 .04431314 199101 .042781392 .96 2.9476627 1.664684 .0055701994 -.0051041534 .042315346 .005116646 .0977 .0935 .0841 .0516 .0395 .11749612 .099675956 .01321588 .09292419 199102 .068041102 1.06 3.0515163 1.6708693 .0087658785 .097320626 -.038045402 .004933343 .1229 .0924 .0889 .0815 .08 .11978292 .099244337 .077034147 .094222122 199103 .023502177 1.11 3.0757451 1.6804807 .010210728 -.0010602499 .014351699 .004883342 .0761 .0743 .0481 .0455 .012 .049943459 .028751036 .030019418 .032099285 199104 -.0013861052 1.23 3.0923817 1.6590837 .0058615677 -.0052015584 -.0020461145 .004741713 -.0132 -.0289 -.0078 -.0001 -.0019 -.01046825 -.016978515 -.015338632 .011341767 199105 .035248183 1.5 3.084884 1.67436 .004309962 .0082276908 .02271053 .004549997 .0544 .0376 .0658 .0397 .0686 .058022122 .056415447 .043939377 .067192412 199106 -.049887627 1.42 3.0835875 1.7203005 .0094085029 -.027222457 -.032073673 .004649961 -.0574 -.0516 -.0528 -.0428 -.0395 -.079378644 -.07320167 -.038958906 -.047176416 199107 .041101192 1.71 3.0866172 1.7329534 .00031467686 .042206667 -.0014201516 .00466666 .0424 .0598 .0591 .0643 .0081 .073272477 .050325015 .076738999 .056630268 199108 .022064351 1.61 3.1083668 1.7328576 .010546596 .0053573976 .0061603572 .004500037 .0387 .0546 .0166 .0438 .0176 .039886239 .021745287 .03410797 .034028991 199109 -.015428971 1.23 3.1014802 1.7581476 .007799295 -.014220606 -.0090076597 .004316644 .0064 -.0012 -.0037 -.021 -.0382 -.0010723043 -.029284393 -.0073710169 -.0080010347 199110 .013373658 1.65 3.0994341 1.7707362 .0016168025 .010040765 .0017160908 .004199968 .0239 .0297 .0253 .0147 .005 .0012886541 .0027192137 .024965763 .040451829 199111 -.041675451 1.65 3.0957319 1.7764372 .0068914496 -.027300574 -.021266327 .003699999 -.0502 -.0355 -.0244 -.0121 -.0831 -.051966509 -.039022418 -.01342243 -.046044798 199112 .09856959 1.68 3.1021296 1.801241 .0016835556 .069642376 .027243658 .00312507 .1093 .1452 .1337 .1534 .1286 .14410748 .11005604 .14353534 .12990558 199201 -.0048462536 1.89 3.1703972 1.7699284 .01469567 -.0038516738 -.01569025 .0032 .0842 .015 -.0026 -.0325 .0675 .030558833 .041570478 -.040628776 .021325619 199202 .0099079047 1.68 3.1616104 1.7086906 .0056947576 -.019679887 .023893034 .003299991 .0072 .0007 -.0053 .0022 .1012 .036302385 .04335575 .0057724954 .04176327 199203 -.027359047 1.66 3.1482634 1.6515203 .0066343946 -.046236251 .012242809 .003399936 -.0849 -.0526 -.0563 -.0287 .008 -.041113085 -.028939616 -.026796741 -.022945689 199204 .010674801 2.12 3.147724 1.6043993 .0038999019 -.0046238379 .011398737 .003075019 -.0707 -.0527 -.0191 -.0011 .0704 -.024273608 -.0060293406 .0116734 -.0067946755 199205 .0033786935 2.05 3.1650627 1.5754549 .01102512 -.0028647191 -.0047817072 .003125016 -.0035 .002 .0006 .0131 -.0003 .0028963673 -.00037492673 .011265314 -.0079230652 199206 -.022481149 2.2 3.1478011 1.4847344 .010000813 -.059766014 .027284052 .003058318 -.0539 -.0488 -.0182 -.0308 .0072 -.036795002 -.026061295 -.030658052 -.014513251 199207 .036516521 2.54 3.1629036 1.4758222 .0099050674 .023913187 .0026982671 .002650003 .031 .0523 .0535 .0486 -.0033 .042440025 .026477158 .051032197 .042972537 199208 -.023591751 2.47 3.1684525 1.4582289 .017535883 -.037485448 -.003642186 .00261665 -.0401 -.0441 -.0128 -.0058 -.088 -.035956176 -.039910077 -.010938171 -.036942995 199209 .0099214541 2.72 3.1676465 1.4569487 .011560726 .0012279816 -.0028672533 .002424986 .0205 .0302 .0033 .0083 .0019 .035946488 .029197342 -.0065920437 .031592421 199210 .008369042 2.67 3.1511369 1.4829317 .016347348 -.020301042 .012322736 .002475039 .0479 .0597 .0529 .0201 -.0013 .061445302 .021498778 .0060441428 .030091503 199211 .03665324 2.62 3.1737824 1.5110869 .015794764 .027320823 -.006462348 .002725014 .0948 .0946 .0717 .0368 .0852 .085926641 .079620172 .02495823 .060305642 199212 .014727906 2.61 3.2005716 1.4884234 .017462875 -.0056763363 .0029413675 .002683292 .0159 .0341 .0168 -.0071 .0284 .016971998 .033786524 .0077716184 .040448992 199301 .0097941412 1.98 3.196606 1.4406005 .015228246 -.024033194 .018599089 .002483298 -.0059 -.0212 .0123 -.0241 .0928 .029637817 .053976633 -.02022988 .024467618 199302 .0029814606 2 3.2083474 1.3626069 .011387599 -.022881827 .014475688 .002466725 -.0829 -.0805 -.0529 -.0306 .0209 -.035884624 .010879687 -.0027664923 -.0019350573 199303 .022255393 2.02 3.2238624 1.3478493 .011678315 .0085172658 .0020598123 .002449972 .0113 .0466 .0301 .0067 .0344 .020475056 .028704573 .0081915352 .047276357 199304 -.028227883 2.18 3.2045645 1.3356704 .013583876 -.052764174 .010952415 .002399998 -.0309 -.0451 -.0484 -.0599 .0115 -.038069128 -.046358244 -.03604462 -.017833153 199305 .026448772 2.03 3.2060167 1.3699759 .01027856 .027506062 -.01133585 .002550011 .0732 .0761 .0706 .0313 -.0053 .064019802 .058474132 .020602644 .02753563 end
Related Posts with VAR(1) estimation- errors for each observation in the panel data
Order data in descending orderDear all, I use the TNIC data from Hoberg&Phillips and want to sort the scores pro competitor_r…
Rolling windows VAR IRF and graphsDear Stata users, I am trying to implement the var, vector autoregression, and a panel var (pavar) s…
Order variables from left to right based on their latest valueI would like to order the variables (corresponding to the Stata command "order") from left to right …
Repeated measures ANOVADear Statalist, I'm currently trying to replicate a piece of analysis originally done on SPSS in St…
generating many dummy variables with the var name and label nameHi all, Although I was going through some of the website links, I could not solve my issue. So, I am…
Subscribe to:
Post Comments (Atom)
0 Response to VAR(1) estimation- errors for each observation in the panel data
Post a Comment