I have a question regarding different regression methods to proof my assumption. I want to know how ICT adoption influences the innovativeness of a firm. I have paneldata and two waves of observations. My simple OLS model is
Code:
reg Inno dum_ICT firmage l10 c3 b2b i.a4a i.a1
Code:
. regress Inno dum_ICT firmage l10 c3 b2b i.a4a i.a1 Source | SS df MS Number of obs = 5,167 -------------+---------------------------------- F(53, 5113) = 56.83 Model | 3378.29391 53 63.7413945 Prob > F = 0.0000 Residual | 5735.11813 5,113 1.1216738 R-squared = 0.3707 -------------+---------------------------------- Adj R-squared = 0.3642 Total | 9113.41204 5,166 1.76411383 Root MSE = 1.0591 ------------------------------------------------------------------------------ Inno | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dum_ICT | .2775897 .046647 5.95 0.000 .1861417 .3690376 firmage | -.000695 .0010344 -0.67 0.502 -.0027229 .0013329 l10 | .447571 .033803 13.24 0.000 .3813027 .5138393 c3 | .1906314 .0429038 4.44 0.000 .1065216 .2747412 b2b | .0007365 .0005533 1.33 0.183 -.0003482 .0018211 |
Therefore I adapted the model obove in order to see if firms which had zero ICT in year 1 but adapted ICT between year one and year 2 perform better:
Code:
. xtset panelid year panel variable: panelid (strongly balanced) time variable: year, 1 to 2 delta: 1 unit . regress Inno dum_ICT firmage l10 c3 b2b i.a4a i.a1 if year==2 & L.dum_ICT==0 Source | SS df MS Number of obs = 3,103 -------------+---------------------------------- F(52, 3050) = 42.74 Model | 2659.28191 52 51.1400367 Prob > F = 0.0000 Residual | 3649.46382 3,050 1.19654552 R-squared = 0.4215 -------------+---------------------------------- Adj R-squared = 0.4117 Total | 6308.74573 3,102 2.03376716 Root MSE = 1.0939 ------------------------------------------------------------------------------ Inno | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dum_ICT | .2845822 .0697638 4.08 0.000 .1477933 .421371 firmage | -.0010243 .0015315 -0.67 0.504 -.0040271 .0019784 l10 | .5705493 .0458074 12.46 0.000 .4807328 .6603659 c3 | .1032498 .0581832 1.77 0.076 -.0108325 .2173322 b2b | .000677 .0007668 0.88 0.377 -.0008264 .0021804 | a4a | 2 | -.2885407 .2943741 -0.98 0.327 -.8657323 .2886509 3 | -.2833497 .3388527 -0.84 0.403 -.9477525 .3810531 4 | .0474887 .355741 0.13 0.894 -.6500278 .7450051 5 | -.4421766 .2829037 -1.56 0.118 -.9968779 .1125246 6 | -.4162328 .2702835 -1.54 0.124 -.9461891 .1137235 7 | -.0908338 .3143731 -0.29 0.773 -.7072384 .5255707 8 | -.3757523 .2803625 -1.34 0.180 -.9254708 .1739663 9 | -.5647735 .2802044 -2.02 0.044 -1.114182 -.015365 10 | -.5570642 .4010146 -1.39 0.165 -1.34335 .229222 11 | .0529539 .4912183 0.11 0.914 -.9101984 1.016106 12 | -.1009795 .3189997 -0.32 0.752 -.7264557 .5244966 13 | -.197411 .2702716 -0.73 0.465 -.7273438 .3325219 14 | -.6717909 .4492206 -1.50 0.135 -1.552597 .2090148 15 | -.1987418 .3154601 -0.63 0.529 -.8172777 .4197941 16 | .290117 .3185079 0.91 0.362 -.3343948 .9146287 17 | -1.44027 .8197693 -1.76 0.079 -3.047626 .1670859 18 | .5777043 .8202959 0.70 0.481 -1.030684 2.186093 19 | -.3818752 .2680905 -1.42 0.154 -.9075315 .1437811 20 | -.2772761 .2735206 -1.01 0.311 -.8135795 .2590272 21 | -.6216942 .3072893 -2.02 0.043 -1.224209 -.0191792 23 | -.4837853 .3432089 -1.41 0.159 -1.156729 .189159 24 | -.4641845 .2853611 -1.63 0.104 -1.023704 .095335 25 | -.971511 .3362687 -2.89 0.004 -1.630847 -.3121749 | a1 | 11 | .1634681 .1675756 0.98 0.329 -.1651045 .4920408 12 | -.3999711 .1618933 -2.47 0.014 -.717402 -.0825401 13 | -.1681401 .2141821 -0.79 0.432 -.588096 .2518158 14 | -.2134868 .2321303 -0.92 0.358 -.6686344 .2416608 15 | .3120863 .1438212 2.17 0.030 .03009 .5940826 16 | -.2574673 .1790772 -1.44 0.151 -.6085916 .093657 17 | -.1769258 .1475234 -1.20 0.231 -.4661812 .1123295 18 | .4848021 .1341442 3.61 0.000 .22178 .7478242 19 | 1.083772 .1396287 7.76 0.000 .8099967 1.357548 20 | 1.801743 .2438499 7.39 0.000 1.323616 2.27987 21 | 1.915563 .14788 12.95 0.000 1.625609 2.205518 22 | -.0225719 .1868979 -0.12 0.904 -.3890305 .3438867 23 | 1.349221 .1709095 7.89 0.000 1.014112 1.684331 25 | -.0714195 .1505803 -0.47 0.635 -.3666687 .2238297 27 | 1.790655 .1183697 15.13 0.000 1.558562 2.022747 28 | 1.999689 .1823233 10.97 0.000 1.6422 2.357178 29 | .9985773 .1282099 7.79 0.000 .7471907 1.249964 30 | .6118559 .1740438 3.52 0.000 .2706009 .953111 31 | -.4342055 .1394508 -3.11 0.002 -.7076325 -.1607785 32 | 2.301774 .1525156 15.09 0.000 2.00273 2.600817 33 | .7592134 .2025517 3.75 0.000 .3620618 1.156365 34 | 1.854734 .1338328 13.86 0.000 1.592322 2.117146 35 | 1.692545 .1409749 12.01 0.000 1.41613 1.968961 36 | .7192039 .1578082 4.56 0.000 .4097826 1.028625 | _cons | .2699117 .281987 0.96 0.339 -.282992 .8228155 ------------------------------------------------------------------------------
But I want further proof so I include Treatment effects and here a propensity score model (logistic).
Outcome variable: Inno
Treatment variable: dum_ICT
Treatment independent: firmage l10 c3 b2b
Code:
. teffects psmatch (Inno) (dum_ICT firmage l10 c3 b2b) Treatment-effects estimation Number of obs = 6,460 Estimator : propensity-score matching Matches: requested = 1 Outcome model : matching min = 1 Treatment model: logit max = 206 ------------------------------------------------------------------------------ | AI Robust Inno | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | dum_ICT | (1 vs 0) | .3910807 .0534788 7.31 0.000 .2862642 .4958973 ------------------------------------------------------------------------------
Also that model shows that ICT adoption is significant and if a firm adopts ICT their innovativeness increases. My question now is, what else would you suggest to do in order to proof my assumption? Would you suggest to use another estimation technique? I also think about interaction terms in order to see why ICT adoption positively affects Innovation. Therefore I am curious about interesting interactions with ICT.
By the way, I will do all the regressions I showed above for the dependent variables:
Capacity Utilization
Export Rate
Gross Profit Margin
Labor Productivity and
Cost of Material Ratio
in order to show how ICT adoption affects overall firm performance.
Thank you very much.
Kind regards
Dominik
0 Response to Different regression methods to proof
Post a Comment