Dear Statalists,

I do Research on the effects of employee stock ownership on individuals idea suggestions to a corporate idea suggestion scheme (Count). We have 5 years of observations (N~650,000 observations)
  • NEWIDEA_A is the Count of ideas issued per year per employee
  • ESO_ONLY_BINARY is a binary measure if employees particpiate in the firms employee stock ownership scheme (1 yes / 0 no) ~ 90,000 observations
  • ESO_AND_OTHER_BINARY is a binary measure if employees participate in the firms employee stock ownership scheme and purchase additional stocks thorugh private accounts (1 yes / 0 no) ~ only 3900 observations
  • Employees who purchae no stocks at all also exist in the data base an account for 70% of observations.
  • Several controls are included such as AGE, TENURE, etc.
I ran the following model and find both measures, ESO_ONLY_BINARY and ESO_AND_OTHER_BINARY to be statistically significantly related to NEWIDEA_A (see below)

Code:
xtnbreg NEWIDEA_A AGE TENURE GENDER FULLTIME DUMMY_FUNCTION_1 DUMMY_FUNCTION_2 DUMMY_LEVEL_1 DUMMY_LEVEL_2 DUMMY_LEVEL_3 SIZE ESO_ONLY_BINARY OTHER_ONLY_BINARY ESO_AND_OTHER_BINARY i.YEAR, fe iterate (30)
Code:
. xtnbreg NEWIDEA_A AGE TENURE GENDER FULLTIME DUMMY_FUNCTION_1 DUMMY_FUNCTION_2 DUMMY_LEVEL_1 DUMMY_LEVEL_2 DUMMY_LEVEL_3 SIZE ESO_ONLY_BINARY ESO_AND_OTHER_BI
> NARY i.YEAR, fe iterate (30)
note: 9709 groups (9709 obs) dropped because of only one obs per group
note: 101545 groups (463225 obs) dropped because of all zero outcomes

Iteration 0:   log likelihood = -134796.23 
Iteration 1:   log likelihood = -133837.24 
Iteration 2:   log likelihood = -133821.82 
Iteration 3:   log likelihood = -133821.82 

Conditional FE negative binomial regression     Number of obs     =    179,289
Group variable: NEWID                           Number of groups  =     37,538

                                                Obs per group:
                                                              min =          2
                                                              avg =        4.8
                                                              max =          5

                                                Wald chi2(16)     =    2043.47
Log likelihood  = -133821.82                    Prob > chi2       =     0.0000

--------------------------------------------------------------------------------------
           NEWIDEA_A |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------------------+----------------------------------------------------------------
                 AGE |  -.0060906   .0018842    -3.23   0.001    -.0097836   -.0023976
              TENURE |   .0147933   .0019399     7.63   0.000     .0109911    .0185955
              GENDER |   .2054615   .0584715     3.51   0.000     .0908594    .3200635
            FULLTIME |    .258968   .0405608     6.38   0.000     .1794702    .3384658
    DUMMY_FUNCTION_1 |  -.5244884   .0612952    -8.56   0.000    -.6446248    -.404352
    DUMMY_FUNCTION_2 |  -.3110061   .0334079    -9.31   0.000    -.3764844   -.2455278
       DUMMY_LEVEL_1 |   .3542703   .0270299    13.11   0.000     .3012926    .4072479
       DUMMY_LEVEL_2 |   .2987528   .0319901     9.34   0.000     .2360534    .3614521
       DUMMY_LEVEL_3 |  -.0189588   .0446852    -0.42   0.671    -.1065402    .0686225
                SIZE |   .0015458   .0004773     3.24   0.001     .0006104    .0024812
     ESO_ONLY_BINARY |   .1609867   .0166471     9.67   0.000     .1283589    .1936144
ESO_AND_OTHER_BINARY |   .2091466   .0453593     4.61   0.000      .120244    .2980492
                     |
                YEAR |
               2011  |  -.0667986   .0104762    -6.38   0.000    -.0873315   -.0462657
               2012  |  -.1407842   .0108313   -13.00   0.000    -.1620131   -.1195552
               2013  |  -.2304315   .0113434   -20.31   0.000    -.2526642   -.2081989
               2014  |  -.4157918   .0123889   -33.56   0.000    -.4400736   -.3915101
                     |
               _cons |  -.2494561   .0673473    -3.70   0.000    -.3814544   -.1174578
--------------------------------------------------------------------------------------
I now want to analyze if the effects of ESO_ONLY_BINARY and ESO_AND_OTHER_BINARY on NEWIDEA_A are significantly different from each other. I dropped all observations for employees with no stock ownership from the sample and ran the same model. ESO_AND_OTHER_BINARY now has a value of 1 when employees participate in the firms employee stock ownership scheme and purchase additional stocks thorugh private accounts and a value of 0 when employees only participate in the firms employee stock ownership scheme.

I expected to find the measure ESO_AND_OTHER_BINARY to be positive and statistically significant if it has a stronger effect on NEWIDEA_A than ESO_ONLY_BINARY. Results indicate no statistically significant difference.

Code:
drop if ESO_ONLY_BINARY==0 & ESO_AND_OTHER_BINARY==0

xtnbreg NEWIDEA_A AGE TENURE GENDER FULLTIME DUMMY_FUNCTION_1 DUMMY_FUNCTION_2 DUMMY_LEVEL_1 DUMMY_LEVEL_2 DUMMY_LEVEL_3 SIZE ESO_AND_OTHER_BINARY i.YEAR, fe iterate (30)
Code:
 xtnbreg NEWIDEA_A AGE TENURE GENDER FULLTIME DUMMY_FUNCTION_1 DUMMY_FUNCTION_2 DUMMY_LEVEL_1 DUMMY_LEVEL_2 DUMMY_LEVEL_3 SIZE ESO_AND_OTHER_BINARY i.YEAR if N
> UMBERESO > 0, fe iterate (30)
note: 6721 groups (6721 obs) dropped because of only one obs per group
note: 19149 groups (67063 obs) dropped because of all zero outcomes

Iteration 0:   log likelihood = -17664.959 
Iteration 1:   log likelihood = -17490.792 
Iteration 2:   log likelihood = -17487.008 
Iteration 3:   log likelihood = -17486.989 
Iteration 4:   log likelihood = -17486.989 

Conditional FE negative binomial regression     Number of obs     =     24,778
Group variable: NEWID                           Number of groups  =      6,571

                                                Obs per group:
                                                              min =          2
                                                              avg =        3.8
                                                              max =          5

                                                Wald chi2(15)     =     381.35
Log likelihood  = -17486.989                    Prob > chi2       =     0.0000

--------------------------------------------------------------------------------------
           NEWIDEA_A |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------------------+----------------------------------------------------------------
                 AGE |    .001378   .0062992     0.22   0.827    -.0109683    .0137242
              TENURE |   .0074251   .0060829     1.22   0.222    -.0044972    .0193474
              GENDER |   .3475998   .2242667     1.55   0.121    -.0919549    .7871545
            FULLTIME |   .2080055   .1186018     1.75   0.079    -.0244499    .4404608
    DUMMY_FUNCTION_1 |  -.5581062   .1335297    -4.18   0.000    -.8198196   -.2963927
    DUMMY_FUNCTION_2 |  -.3730021   .0797736    -4.68   0.000    -.5293555   -.2166486
       DUMMY_LEVEL_1 |   .3499385   .0805792     4.34   0.000     .1920062    .5078708
       DUMMY_LEVEL_2 |   .4196076   .0883678     4.75   0.000     .2464098    .5928053
       DUMMY_LEVEL_3 |   .1176554   .1113332     1.06   0.291    -.1005537    .3358645
                SIZE |   .0021156   .0017175     1.23   0.218    -.0012507    .0054819
ESO_AND_OTHER_BINARY |  -.0114105   .0487064    -0.23   0.815    -.1068733    .0840523
                     |
                YEAR |
               2011  |  -.0816513   .0248654    -3.28   0.001    -.1303866   -.0329159
               2012  |  -.1998002   .0263144    -7.59   0.000    -.2513755   -.1482248
               2013  |  -.3118865   .0299882   -10.40   0.000    -.3706624   -.2531106
               2014  |  -.5787656   .0368524   -15.70   0.000    -.6509949   -.5065363
                     |
               _cons |   .0013934   .2245913     0.01   0.995    -.4387975    .4415844
--------------------------------------------------------------------------------------

My questions are:
  1. Is the way I used to test the two variables against each other appropriate or would you use a different approach to test if ESO_ONLY_BINARY and ESO_AND_OTHER_BINARY have statistically significnatly different effect magnitues on NEWIDEA_A?
  2. In case my approach is fine, how could I do a power analysis to rule out the concern that I do not find a difference because of a small amount of observations for ESO_AND_OTHER_BINARY (<4000 observations)?
Thank you very mich in advance!
Best
Felix


Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float NEWID double(YEAR NEWIDEA_A AGE TENURE GENDER FULLTIME) float(DUMMY_FUNCTION_1 DUMMY_FUNCTION_2 DUMMY_LEVEL_1 DUMMY_LEVEL_2 DUMMY_LEVEL_3) double SIZE float(ESO_ONLY_BINARY ESO_AND_OTHER_BINARY)
 1 1 0 30 15 0 1 0 0 1 0 0 18 1 0
 1 2 0 31 16 0 1 0 0 1 0 0 19 1 0
 1 3 0 32 17 0 1 0 0 1 0 0 20 1 0
 1 4 0 33 18 0 1 0 0 1 0 0 19 0 0
 1 5 0 34 19 0 1 0 0 1 0 0 21 0 0
 2 1 0 49 31 0 1 0 1 0 1 0  5 0 0
 2 2 0 50 32 0 1 0 1 0 1 0  6 0 0
 2 3 0 51 33 0 1 0 1 0 1 0  5 0 0
 2 4 0 52 34 0 1 0 1 0 1 0  6 0 0
 2 5 0 53 35 0 1 0 1 0 1 0  6 0 0
 4 1 0 47 14 0 0 1 0 0 0 1  6 0 0
 5 1 0 31 14 0 1 0 0 0 0 0 49 0 0
 5 2 0 32 15 0 1 0 0 0 0 0 40 0 0
 5 3 0 33 16 0 1 0 0 0 0 0 43 0 0
 5 4 0 34 17 0 1 0 0 0 0 0 35 0 0
 5 5 0 35 18 0 1 0 0 0 0 0 33 0 0
 6 1 0 55 14 0 0 0 1 0 0 1  2 0 0
 6 2 0 56 15 0 0 0 1 0 0 1  1 0 0
 6 3 0 57 16 0 0 0 1 0 0 1  1 0 0
 6 4 0 58 17 0 0 0 1 0 0 1  1 0 0
 6 5 0 59 18 0 0 0 1 0 0 1  1 0 0
 7 1 3 35 13 0 1 0 0 0 0 0 30 0 0
 7 2 1 36 14 0 1 0 0 0 0 0 29 0 0
 7 3 2 37 15 0 1 0 0 0 0 0 29 0 0
 7 4 6 38 16 0 0 0 0 0 0 0 30 0 0
 7 5 2 39 17 0 0 0 0 0 0 0 30 0 0
 8 1 0 39 13 1 1 0 1 0 1 0  4 0 0
 8 2 0 40 14 1 1 0 1 0 1 0  2 0 0
 8 3 0 41 15 1 1 0 1 0 1 0  5 0 0
 8 4 0 42 16 1 1 0 1 0 1 0  5 0 0
 8 5 0 43 17 1 0 0 1 0 1 0  7 0 0
 9 1 0 39 12 1 0 0 1 0 1 0  7 0 0
 9 2 0 40 13 1 0 0 1 0 1 0  7 0 0
 9 3 0 41 14 1 0 0 1 0 1 0  9 0 0
 9 4 0 42 15 1 0 0 1 0 1 0  8 0 0
 9 5 0 43 16 1 0 0 1 0 1 0  9 0 0
10 1 0 37 11 0 1 0 1 0 0 1  8 0 0
10 2 0 38 12 0 1 0 1 0 0 1  6 0 0
10 3 0 39 13 0 1 0 1 0 0 1  8 0 0
10 4 0 40 14 0 1 0 1 0 0 1  9 0 0
10 5 0 41 15 0 1 0 1 0 0 1 11 0 0
11 1 0 47 12 0 1 0 1 0 1 0  5 0 0
11 2 0 48 13 0 1 0 1 0 1 0  6 0 0
11 3 0 49 14 0 1 0 1 0 1 0  6 0 0
11 4 0 50 15 0 1 0 1 0 1 0  6 0 0
11 5 0 51 16 0 1 0 1 0 1 0  6 0 0
12 2 0 37 13 1 0 0 1 0 1 0  7 0 0
12 3 0 38 14 1 1 0 1 0 1 0  6 0 0
12 4 0 39 15 1 1 0 1 0 1 0  6 1 0
12 5 0 40 16 1 1 0 1 0 1 0  6 0 0
14 1 0 34 12 1 1 1 0 0 1 0 10 1 0
14 2 0 35 13 1 1 0 0 0 0 1  1 1 0
14 3 0 36 14 1 1 0 0 0 0 1  1 1 0
15 1 0 41 12 1 1 0 0 0 0 1  6 0 0
15 2 0 42 13 1 1 0 0 0 0 1  6 0 0
15 3 0 43 14 1 1 0 0 0 0 1  6 0 0
17 2 0 34 14 0 1 0 1 0 1 0  2 0 0
17 3 0 35 15 0 1 0 1 0 1 0  3 0 0
17 4 0 36 16 0 1 0 1 0 1 0  2 0 0
17 5 0 37 17 0 1 0 1 0 1 0  6 0 0
18 1 0 34 13 1 1 0 1 0 1 0 14 0 0
18 2 0 35 14 1 1 0 1 0 1 0 13 0 0
18 3 0 36 15 1 1 0 1 0 1 0  5 0 0
18 5 0 38 17 1 0 0 1 0 1 0  6 0 0
19 1 0 35  7 0 1 0 1 0 0 1  5 1 0
19 2 1 36  8 0 1 0 1 0 0 1  6 1 0
19 3 0 37  9 0 1 0 1 0 0 1  6 1 0
19 4 0 38 10 0 1 0 1 0 0 1  5 1 0
19 5 0 39 11 0 1 0 1 0 0 1  5 1 0
20 5 0 53 20 0 1 0 1 0 0 1  1 0 0
21 1 0 38 12 0 1 0 1 0 1 0  3 0 0
21 2 0 39 13 0 1 0 1 0 1 0  2 0 0
21 3 0 40 14 0 1 0 1 0 1 0  4 0 0
21 4 0 41 15 0 1 0 1 0 1 0  2 0 0
21 5 0 42 16 0 1 0 1 0 1 0  2 0 0
22 1 0 34 10 1 1 0 0 0 1 0 17 0 0
22 2 3 35 11 1 1 0 0 0 1 0  4 0 0
22 3 0 36 12 1 1 0 0 0 1 0 11 0 0
22 4 0 37 13 1 1 0 0 0 1 0 11 0 0
22 5 0 38 14 1 1 0 0 0 1 0 11 0 0
23 1 0 55 32 0 1 0 1 0 1 0 20 0 0
23 2 0 56 33 0 1 0 1 0 1 0 20 0 0
23 3 0 57 34 0 1 0 1 0 1 0 21 0 0
23 4 0 58 35 0 1 0 1 0 1 0 24 0 0
23 5 0 59 36 0 1 0 1 0 1 0 11 0 0
24 1 0 38 15 0 1 0 1 0 0 1  1 0 0
24 2 0 39 16 0 1 0 1 0 0 1  1 0 0
24 3 0 40 17 0 1 0 1 0 0 1  1 0 0
24 4 0 41 18 0 1 0 1 0 0 1  1 0 0
24 5 0 42 19 0 1 0 1 0 0 1  1 0 0
25 2 0 41 14 0 1 0 1 0 0 1  1 0 0
25 3 0 42 15 0 1 0 1 0 0 1  2 0 0
25 4 0 43 16 0 1 0 1 0 0 1  3 0 0
25 5 0 44 17 0 1 0 1 0 0 1  3 0 0
27 3 0 44 15 1 1 0 1 0 1 0  2 0 0
27 4 0 45 16 1 1 0 1 0 1 0  2 0 0
27 5 0 46 17 1 1 0 1 0 1 0  2 0 0
28 1 0 46 12 0 1 0 0 0 0 0 42 0 0
28 2 0 47 13 0 1 0 0 0 0 0 39 0 0
28 3 0 48 14 0 1 0 0 0 0 0 42 0 0
end
label values YEAR YEAR
label def YEAR 1 "2010", modify
label def YEAR 2 "2011", modify
label def YEAR 3 "2012", modify
label def YEAR 4 "2013", modify
label def YEAR 5 "2014", modify
label values GENDER GENDER
label def GENDER 0 "Male", modify
label def GENDER 1 "Female", modify
------------------ copy up to and including the previous line ------------------

Listed 100 out of 652223 observations
Use the count() option to list more