https://www.statalist.org/forums/for...and-panel-data
I am working from two example samples constructed from Stata's 'auto' dataset:
Sample 1: cross-sectional
Code:
* Example generated by -dataex-. For more info, type help dataex clear input int mpg float headroom int weight 14 4 4330 14 3.5 3900 21 3 4290 29 2.5 2110 16 4 3690 22 3.5 3180 22 2 3220 24 2 2750 19 3.5 3430 30 2 2120 18 4 3600 16 4 3600 17 4.5 3740 28 1.5 1800 21 2 2650 12 3.5 4840 12 2.5 4720 14 3.5 3830 22 3 2580 14 3.5 4060 15 3.5 3720 18 3 3370 14 3 4130 20 3.5 2830 21 4 4060 19 2 3310 19 4.5 3300 18 4 3690 19 4.5 3370 24 2 2730 16 3.5 4030 28 2 3260 34 2.5 1800 25 4 2200 26 1.5 2520 18 5 3330 18 4 3700 18 1.5 3470 19 2 3210 19 3.5 3200 19 3.5 3420 24 2 2690 17 3 2830 23 2.5 2070 25 2.5 2650 23 1.5 2370 35 2 2020 24 2.5 2280 21 2.5 2750 21 2.5 2130 25 3 2240 28 2.5 1760 30 3.5 1980 14 3.5 3420 26 3 1830 35 2.5 2050 18 2.5 2410 31 3 2200 18 2 2670 23 2.5 2160 41 3 2040 25 3 1930 25 2 1990 17 2.5 3170 end
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(price mpg headroom t id) 4099 22 2.5 1 1 4186.009 26.934307 1.933958 2 1 4749 17 3 1 2 4843.107 18.91313 3.3818026 2 2 3799 22 3 1 3 3770.704 24.97907 2.9321864 2 3 4816 20 4.5 1 4 4852.0933 22.037195 4.3978457 2 4 7827 15 4 1 5 7734.57 19.414215 3.253971 2 5 5788 18 4 1 6 5762.868 20.123154 4.837951 2 6 4453 26 3 1 7 4521.1724 29.6178 2.0983803 2 7 5189 20 2 1 8 5146.077 23.62131 1.3961287 2 8 10372 16 3.5 1 9 10323.16 15.383166 2.9035466 2 9 4082 19 3.5 1 10 4041.077 16.604582 2.918597 2 10 end
Code:
use sample1.dta, replace qui reg weight mpg headroom use sample2.dta, replace capture drop weight_hat predict weight_hat xtset id t xtreg price weight_hat, fe matrix b = e(b) scalar obs = r(N) capture program drop example program define example, eclass use sample1.dta, replace bsample qui reg weight mpg headroom use sample2.dta, replace capture drop weight_hat predict weight_hat xtset id t xtreg price weight_hat, fe exit end simulate, reps(10000) seed(12345): example bstat, stat(b) n(`obs') estat bootstrap, all
Without bootstrap:
Code:
Fixed-effects (within) regression Number of obs = 20 Group variable: id Number of groups = 10 R-squared: Obs per group: Within = 0.1927 min = 2 Between = 0.3717 avg = 2.0 Overall = 0.3019 max = 2 F(1,9) = 2.15 corr(u_i, Xb) = -0.5577 Prob > F = 0.1768 ------------------------------------------------------------------------------ price | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- weight_hat | -.0608991 .0415549 -1.47 0.177 -.1549027 .0331046 _cons | 5712.816 139.0787 41.08 0.000 5398.199 6027.434 -------------+---------------------------------------------------------------- sigma_u | 2081.0277 sigma_e | 30.10469 rho | .99979077 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(9, 9) = 6584.95 Prob > F = 0.0000
Code:
Bootstrap results Number of obs = 20 Replications = 50 ------------------------------------------------------------------------------- | Observed Bootstrap Normal-based | coefficient std. err. z P>|z| [95% conf. interval] --------------+---------------------------------------------------------------- _b_weight_hat | -.0608991 .0107155 -5.68 0.000 -.0819011 -.039897 _b_cons | 5712.816 34.90237 163.68 0.000 5644.409 5781.224 ------------------------------------------------------------------------------- . eststo: estat bootstrap, all Bootstrap results Number of obs = 20 Replications = 50 ------------------------------------------------------------------------------ | Observed Bootstrap | coefficient Bias std. err. [95% conf. interval] -------------+---------------------------------------------------------------- _b_weight_~t | -.06089906 -.0004936 .01071552 -.0819011 -.039897 (N) | -.0800628 -.040871 (P) | -.0800628 -.0400041 (BC) _b_cons | 5712.8164 1.755529 34.90237 5644.409 5781.224 (N) | 5646.295 5768.709 (P) | 5644.807 5768.709 (BC) ------------------------------------------------------------------------------ Key: N: Normal P: Percentile BC: Bias-corrected
Thank you!
0 Response to Manually bootstrapping standard errors using bsample, simulate, and bstat commands
Post a Comment