Dear Stata Forum,
I am currently trying to add significance stars to a graph I generate via coefplot using matrices.

The Code I use is the following:

Code:
quietly regress coutcome1 i.treatment##i.interaction  ///
                ${controls} , robust
                
                lincom 1.treatment
                local b = r(estimate)*100
                local se = r(se)
                local pvalue = r(p)
                local t = r(t)
                local ll95 = r(lb)*100
                local ul95 = r(ub)*100
                local df = r(df)
                
                mat model1[1,5] = `b' \  `se'  \ `t' \ `pvalue' \  `ll95' \ `ul95' \ `df'    
                matrix colnames model1 = (1) (2) (3) (4) (5)
                matrix rownames model1 = b se t pvalue ll95 ul95 df

                lincom 1.treatment + 1.treatment#1.interaction
                local b = r(estimate)*100
                local se = r(se)
                local pvalue = r(p)
                local t = r(t)
                local ll95 = r(lb)*100
                local ul95 = r(ub)*100
                local df = r(df)

                mat model2[1,1] = `b' \  `se'  \ `t' \ `pvalue' \  `ll95' \ `ul95' \ `df'                
                matrix colnames model2 = (1)
                matrix rownames model2 = b se t pvalue ll95 ul95 df

[Repeat for more outcomes]

quietly regress coutcome5 i.treatment##i.interaction  ///
                ${controls} , robust
                
                lincom 1.treatment
                local b = r(estimate)*100
                local se = r(se)
                local pvalue = r(p)
                local t = r(t)
                local ll95 = r(lb)*100
                local ul95 = r(ub)*100
                local df = r(df)
                
                mat model1[1,5] = `b' \  `se'  \ `t' \ `pvalue' \  `ll95' \ `ul95' \ `df'    
                matrix colnames model1 = (1) (2) (3) (4) (5)
                matrix rownames model1 = b se t pvalue ll95 ul95 df

                lincom 1.treatment + 1.treatment#1.interaction
                local b = r(estimate)*100
                local se = r(se)
                local pvalue = r(p)
                local t = r(t)
                local ll95 = r(lb)*100
                local ul95 = r(ub)*100
                local df = r(df)
                
                mat model2[1,5] = `b' \  `se'  \ `t' \ `pvalue' \  `ll95' \ `ul95' \ `df'                    
                matrix colnames model2 = (1) (2) (3) (4) (5)
                matrix rownames model2 = b se t pvalue ll95 ul95 df



coefplot (matrix(model1), keep ( (1) (2) (3) (4) (5) ) ci((5 6)) mlabel(cond(@pval<.01, "***", cond(@pval<.05, "**", cond(@pval<.10, "*", ""))))   )  ///
            (matrix(model2), keep ( (1) (2) (3) (4) (5) ) ci((5 6)) mlabel(cond(@pval<.01, "***", cond(@pval<.05, "**", cond(@pval<.10, "*", ""))))   ), ///
                title( "Treatment Effect in Percentage Points" , size(large))
The reason I use this approach is that I want to have the main treatment effect represented close to its interaction effect, so that readers can compare the two at one glance. Quite similar to the standard comparison of two models using coefplot
see: http://repec.sowi.unibe.ch/stata/coe...ted/plots1.pdf

Yet, when I try to add significance stars dependent on the p-values this approach crashes. I have the feeling that I have to access r(table) to add my coefficient results and trick coefplot into thinking that my matrices are regression outcomes.
Still, I do not know how to do that.
Can anybody please help?

All the best,
Fabian