I am trying to perform a Quantile Regression with an unbalanced panel data set, to find out whether the effect of IDV on Gini differs in the .25th and the .75th quantile.
Therefore, I downloaded the following package:
Code:
qregpd
Code:
qregpd Gini_DispSWIID IDV GLPIntensity InflationGDPdeflatorannual Ruralpopulation LevelofdemocracyPolityV Populationgrowthannual TradeofGDP Schoolenrollmentsecondary GDPgrowthannual Wageandsalariedworkerstotal Currenthealthexpenditureof Arablelandoftotal, id(Country_ID) fix(Year) quantile(.75)
Code:
. qregpd Gini_DispSWIID IDV GLPIntensity InflationGDPdeflatorannual Ruralpopulation Levelofdemocr
> acyPolityV Populationgrowthannual TradeofGDP Schoolenrollmentsecondary GDPgrowthannual Wageands
> alariedworkerstotal Currenthealthexpenditureof Arablelandoftotal, id(Country_ID) fix(Year) quan
> tile(.75)
Nelder-Mead optimization
initial: f(p) = -87.285174
rescale: f(p) = -87.285174
Iteration 0: f(p) = -87.285174
Iteration 1: f(p) = -5.0307519
Iteration 2: f(p) = -.78734938
Iteration 3: f(p) = -.78734938
Iteration 4: f(p) = -.78734938
Iteration 5: f(p) = -.78734938
Iteration 6: f(p) = -.78734938
Iteration 7: f(p) = -.78734938
Iteration 8: f(p) = -.78734938
Iteration 9: f(p) = -.78734938
Iteration 10: f(p) = -.78734938
Iteration 11: f(p) = -.78734938
Iteration 12: f(p) = -.78734938
Iteration 13: f(p) = -.78734938
Iteration 14: f(p) = -.78734938
Iteration 15: f(p) = -.78734938
Iteration 16: f(p) = -.78734938
Iteration 17: f(p) = -.6038165
Iteration 18: f(p) = -.6038165
Iteration 19: f(p) = -.6038165
Iteration 20: f(p) = -.6038165
Iteration 21: f(p) = -.6038165
Iteration 22: f(p) = -.6038165
Iteration 23: f(p) = -.6038165
Iteration 24: f(p) = -.6038165
Iteration 25: f(p) = -.6038165
Iteration 26: f(p) = -.6038165
Iteration 27: f(p) = -.6038165
Iteration 28: f(p) = -.6038165
Iteration 29: f(p) = -.6038165
Iteration 30: f(p) = -.6038165
Iteration 31: f(p) = -.6038165
Iteration 32: f(p) = -.6038165
Iteration 33: f(p) = -.6038165
Iteration 34: f(p) = -.6038165
Iteration 35: f(p) = -.6038165
Iteration 36: f(p) = -.6038165
Iteration 37: f(p) = -.6038165
Iteration 38: f(p) = -.6038165
Iteration 39: f(p) = -.6038165
Iteration 40: f(p) = -.6038165
Iteration 41: f(p) = -.6038165
Iteration 42: f(p) = -.6038165
Iteration 43: f(p) = -.6038165
Iteration 44: f(p) = -.6038165
Iteration 45: f(p) = -.6038165
Iteration 46: f(p) = -.6038165
Iteration 47: f(p) = -.6038165
Iteration 48: f(p) = -.6038165
Quantile Regression for Panel Data (QRPD)
Number of obs: 301
Number of groups: 19
Min obs per group: 11
Max obs per group: 19
---------------------------------------------------------------------------------------------
Gini_DispSWIID | Coefficient Std. err. z P>|z| [95% conf. interval]
----------------------------+----------------------------------------------------------------
IDV | -.0515317 . . . . .
GLPIntensity | -118.5223 . . . . .
InflationGDPdeflatorannual | -.2093337 . . . . .
Ruralpopulationasaoftota | -23.02208 . . . . .
LevelofdemocracyPolityV | .8931058 . . . . .
Populationgrowthannual | 1.354606 . . . . .
TradeofGDP | .0269068 .235968 0.11 0.909 -.435582 .4893956
Schoolenrollmentsecondary | -.021503 .0731588 -0.29 0.769 -.1648916 .1218855
GDPgrowthannual | .1055383 . . . . .
Wageandsalariedworkerstotal | -.3813951 . . . . .
Currenthealthexpenditureof | .8699441 . . . . .
Arablelandoftotal | 4.889251 . . . . .
---------------------------------------------------------------------------------------------
No excluded instruments - standard QRPD estimation.Thank you so much.
Kind regards,
Matthew
No comments:
Post a Comment