My coefficient for my Construction costs index is too high I have correct construction costs index by dividing it by the cpi index and multiplied by 100 to get the real construction cost variable afterwards I have taken the log of real construction cost to get log real construction cost index. However when I run my regression I get a very high coefficient and I was wondering how I can solve this problem?
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double ConsCost_index float(real_consCost log_real_consCost) 100 100 4.6051702 105.2 102.73438 4.632147 109.3 102.53437 4.630198 111.5 101.25672 4.617659 113.7 101.13087 4.6164155 115.9 101.76472 4.6226635 119.3 102.99907 4.63472 124.1 105.97746 4.6632266 129.8 109.09948 4.6922603 130 106.60252 4.669107 130.8 105.9867 4.6633134 133.4 106.70628 4.67008 135.7 106.10562 4.664435 136 103.74653 4.6419506 137.2 102.1092 4.626043 139.8 103.01408 4.6348658 142.6 104.4506 4.648714 145.9 106.54813 4.6685967 149.6 107.74178 4.6797376 153.8 108.91506 4.6905684 157.2 108.50176 4.6867666 100 100 4.6051702 105.2 102.73438 4.632147 109.3 102.53437 4.630198 111.5 101.25672 4.617659 113.7 101.13087 4.6164155 115.9 101.76472 4.6226635 119.3 102.99907 4.63472 124.1 105.97746 4.6632266 129.8 109.09948 4.6922603 130 106.60252 4.669107 130.8 105.9867 4.6633134 133.4 106.70628 4.67008 135.7 106.10562 4.664435 136 103.74653 4.6419506 137.2 102.1092 4.626043 139.8 103.01408 4.6348658 142.6 104.4506 4.648714 145.9 106.54813 4.6685967 149.6 107.74178 4.6797376 153.8 108.91506 4.6905684 157.2 108.50176 4.6867666 100 100 4.6051702 105.2 102.73438 4.632147 109.3 102.53437 4.630198 111.5 101.25672 4.617659 113.7 101.13087 4.6164155 115.9 101.76472 4.6226635 119.3 102.99907 4.63472 124.1 105.97746 4.6632266 129.8 109.09948 4.6922603 130 106.60252 4.669107 130.8 105.9867 4.6633134 133.4 106.70628 4.67008 135.7 106.10562 4.664435 136 103.74653 4.6419506 137.2 102.1092 4.626043 139.8 103.01408 4.6348658 142.6 104.4506 4.648714 145.9 106.54813 4.6685967 149.6 107.74178 4.6797376 153.8 108.91506 4.6905684 157.2 108.50176 4.6867666 100 100 4.6051702 105.2 102.73438 4.632147 109.3 102.53437 4.630198 111.5 101.25672 4.617659 113.7 101.13087 4.6164155 115.9 101.76472 4.6226635 119.3 102.99907 4.63472 124.1 105.97746 4.6632266 129.8 109.09948 4.6922603 130 106.60252 4.669107 130.8 105.9867 4.6633134 133.4 106.70628 4.67008 135.7 106.10562 4.664435 136 103.74653 4.6419506 137.2 102.1092 4.626043 139.8 103.01408 4.6348658 142.6 104.4506 4.648714 145.9 106.54813 4.6685967 149.6 107.74178 4.6797376 153.8 108.91506 4.6905684 157.2 108.50176 4.6867666 100 100 4.6051702 105.2 102.73438 4.632147 109.3 102.53437 4.630198 111.5 101.25672 4.617659 113.7 101.13087 4.6164155 115.9 101.76472 4.6226635 119.3 102.99907 4.63472 124.1 105.97746 4.6632266 129.8 109.09948 4.6922603 130 106.60252 4.669107 130.8 105.9867 4.6633134 133.4 106.70628 4.67008 135.7 106.10562 4.664435 136 103.74653 4.6419506 137.2 102.1092 4.626043 139.8 103.01408 4.6348658 end
This is my regression command and results:
Code:
. asdoc xtreg log_realHP log_PopulationDensity log_Population Unemployment_rate log_
> real_consCost logReal_income real_interest i.low_dev i.Year,fe vce(robust) replace
>  cnames(low development) save(PanelData_regression) add(Low dev Dummy,YES, Year Du
> mmy,YES) dec(3)
note: 2018.Year omitted because of collinearity
note: 2019.Year omitted because of collinearity
Fixed-effects (within) regression               Number of obs     =      2,532
Group variable: GM_code                         Number of groups  =        282
R-sq:                                           Obs per group:
     within  = 0.8875                                         min =          8
     between = 0.0581                                         avg =        9.0
     overall = 0.0023                                         max =          9
                                                F(13,281)         =     946.78
corr(u_i, Xb)  = -0.5914                        Prob > F          =     0.0000
                                   (Std. Err. adjusted for 282 clusters in GM_code)
-----------------------------------------------------------------------------------
                  |               Robust
       log_realHP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
log_PopulationD~y |   .0364162   .0302895     1.20   0.230    -.0232068    .0960393
   log_Population |   .1433754    .076217     1.88   0.061    -.0066533    .2934041
Unemployment_rate |     .03056   .0082342     3.71   0.000     .0143513    .0467686
log_real_consCost |   78.75831   1.275555    61.74   0.000     76.24746    81.26917
   logReal_income |   .2192286   .1029772     2.13   0.034     .0165239    .4219334
    real_interest |   .5209448   .0086732    60.06   0.000     .5038721    .5380175
        1.low_dev |   .0109145   .0026326     4.15   0.000     .0057325    .0160966
                  |
             Year |
            2012  |   1.041003   .0177587    58.62   0.000     1.006046     1.07596
            2013  |   2.727895   .0451684    60.39   0.000     2.638983    2.816806
            2014  |   3.375704   .0558562    60.44   0.000     3.265754    3.485653
            2015  |   2.838823   .0477437    59.46   0.000     2.744843    2.932804
            2016  |    1.79892   .0302964    59.38   0.000     1.739283    1.858557
            2017  |   .7132875   .0122971    58.00   0.000     .6890815    .7374935
            2018  |          0  (omitted)
            2019  |          0  (omitted)
                  |
            _cons |  -359.9836    6.54667   -54.99   0.000    -372.8704   -347.0969
------------------+----------------------------------------------------------------
          sigma_u |  .29981225
          sigma_e |  .02925436
              rho |  .99056879   (fraction of variance due to u_i)
----------------------------------------------------------------------------------
No comments:
Post a Comment