I am studying country structural transformation by regressing log(manufacturing value added per capita) on log(GDP per capita), its quadratic and cubic terms, population density, population and natural resources as share of GDP using a fixed effects country panel, as follows:
Code:
xtreg lmvapc lgdppc lgdppc2 lgdppc3 lpopdensity lpop dependency_ratio natural_resource_rent ,fe
Code:
ivregress 2sls lmvapc lpopdensity lpop dependency_ratio natural_resource_rent i.$id (lgdppc_weo lgdppc2_weo lgdppc3_weo = l2lgdp l2lgdp2 l2lgdp3)
Code:
Instrumental variables 2SLS regression Number of obs = 4,752
Wald chi2(181) = 1531972.35
Prob > chi2 = 0.0000
R-squared = 0.9861
Root MSE = .19314
---------------------------------------------------------------------------------------
| Robust
lmvapc | Coefficient std. err. z P>|z| [95% conf. interval]
----------------------+----------------------------------------------------------------
lgdppc_weo | 2.70563 1.304755 2.07 0.038 .1483583 5.262902
lgdppc2_weo | -.1551981 .1500386 -1.03 0.301 -.4492684 .1388722
lgdppc3_weo | .0041253 .0056705 0.73 0.467 -.0069887 .0152392
lpopdensity | -.0222306 .0199534 -1.11 0.265 -.0613386 .0168774
lpop | -.1678059 .0371796 -4.51 0.000 -.2406766 -.0949351
dependency_ratio | -.0030668 .0009559 -3.21 0.001 -.0049402 -.0011933
natural_resource_rent | -.0017048 .0009515 -1.79 0.073 -.0035697 .00016Code:
Instrumental variables 2SLS regression Number of obs = 4,752
Wald chi2(181) = 467.03
Prob > chi2 = 0.0000
R-squared = 0.9861
Root MSE = .19314
(Std. err. adjusted for 175 clusters in countryid)
---------------------------------------------------------------------------------------
| Robust
lmvapc | Coefficient std. err. z P>|z| [95% conf. interval]
----------------------+----------------------------------------------------------------
lgdppc_weo | 2.70563 3.188655 0.85 0.396 -3.544019 8.955279
lgdppc2_weo | -.1551981 .3662342 -0.42 0.672 -.8730039 .5626077
lgdppc3_weo | .0041253 .0139253 0.30 0.767 -.0231679 .0314184
lpopdensity | -.0222306 .0519262 -0.43 0.669 -.1240041 .0795429
lpop | -.1678059 .1191995 -1.41 0.159 -.4014327 .0658209
dependency_ratio | -.0030668 .0027595 -1.11 0.266 -.0084753 .0023418
natural_resource_rent | -.0017048 .0014137 -1.21 0.228 -.0044757 .001066Thanks a lot in advance and best regards,
Moheb
0 Response to Clustering SEs in Panel IVFE regression eliminates significance
Post a Comment