I'm trying to do something that should be easy but I'm not certain I am doing it/interpreting the output the correct way.
My basic model is a mixed level model and I am interested in the independent variables AC, CP, and their interaction. Specifically, I am predicting that CP will be a significant predictor of DV when AC is low, but that CP will become irrelevant when AC is high.
Thus, I run the following:
Code:
mixed DV X Y AC##CP || Country: || ParticipantID:
(deleted since question is about the next step)
margins, at( AC=(1 7) CP=(40 70) ) post
Predictive margins Number of obs = 7,243
Expression : Linear prediction, fixed portion, predict()
1._at : AC = 1
CP = 40
2._at : AC = 1
CP = 70
3._at : AC = 6
CP = 40
4._at : AC = 6
CP = 70
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | -.0126381 .1316229 -0.10 0.924 -.2706142 .2453381
2 | .0034672 .1128805 0.03 0.975 -.2177744 .2247088
3 | -.0421888 .1166925 -0.36 0.718 -.2709019 .1865243
4 | -.0267793 .1119971 -0.24 0.811 -.2462896 .1927309
------------------------------------------------------------------------------
test 3._at=4._at
( 1) 3._at - 4._at = 0
chi2( 1) = 0.01
Prob > chi2 = 0.9072
. lincom 3._at - 4._at
( 1) 3._at - 4._at = 0
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | -.0154094 .1321867 -0.12 0.907 -.2744906 .2436717
------------------------------------------------------------------------------
In case it is relevant:
sum AC CP
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
AC | 18,887 4.062194 1.136002 1 6
CP | 23,302 57.39825 15.30319 25 88So my questions:
First, am I correct in interpreting the test and lincom results to say that the probability that the predictive values for 3._at and 4._at are not equal to one another is (1-.907=.093)? In other words, if we consider the null hypothesis to be that 3._at is not equal to 4._at, then the p-value of the test would be .093?
Second, is there a better way to test the hypothesis that the importance of the CP interactive term declines to zero with an increase in AC?
0 Response to Using margins, test, and lincom to test hypothesis that two predictive values are equal
Post a Comment