Hello everyone,

I'm running a multilevel logistic regression with SHARE Corona Survey. I would like to find out whether there are differences in mental health between individuals and coutries.

My dependent variables are: nervousness (0=no, 1=yes), sadness (0=no, 1=yes) and sleep problems (0=no, 1=yes).
My independent level-1 variables are: age (50-59, 60-69, 70-79, 80+), gender (0=female, 1=male), education (1=low, 2=intermediate, 3=high), partner (0=no, 1=yes), chronic deseases (0=no, 1=yes), Covid-19-death among relatives or friends (0=no, 1=yes).
My independent level-2 variable is lockdown (created self): 0=no lockdown (Sweden), 1=moderate Lockdown (Germany) and 2=hard lockdown (Italy).

Code for a model with level-1 variables only:

Code:
xtset countr id
xtlogit nerv i.age gend i.educ partn chron_d cov_d if sample, or
Results:
Code:
Fitting comparison model:

Iteration 0:   log likelihood = -4167.7406  
Iteration 1:   log likelihood = -4059.5243  
Iteration 2:   log likelihood = -4058.8308  
Iteration 3:   log likelihood = -4058.8307  

Fitting full model:

tau =  0.0     log likelihood = -4058.8307
tau =  0.1     log likelihood =  -4031.283
tau =  0.2     log likelihood = -4027.1215
tau =  0.3     log likelihood = -4029.9055

Iteration 0:   log likelihood = -4030.9008  
Iteration 1:   log likelihood = -4020.0158  
Iteration 2:   log likelihood = -4015.1903  
Iteration 3:   log likelihood = -4014.9227  
Iteration 4:   log likelihood = -4014.9034  
Iteration 5:   log likelihood = -4014.9033  

Random-effects logistic regression              Number of obs     =      6,827
Group variable: countr                          Number of groups  =          3

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =      1,171
                                                              avg =    2,275.7
                                                              max =      3,173

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(9)      =     120.07
Log likelihood  = -4014.9033                    Prob > chi2       =     0.0000

------------------------------------------------------------------------------
        nerv | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |
      60-69  |   .8303109   .0776436    -1.99   0.047     .6912635    .9973276
      70-79  |   .7853784   .0745395    -2.55   0.011      .652067    .9459445
        80+  |   .8211719   .0865503    -1.87   0.062     .6679111      1.0096
             |
        gend |   .6086208   .0344252    -8.78   0.000     .5447542     .679975
             |
        educ |
     interm  |   .8127958   .0571963    -2.95   0.003     .7080803    .9329972
       high  |   .8525676   .0716341    -1.90   0.058     .7231185     1.00519
             |
       partn |   .9764865   .0614329    -0.38   0.705     .8632076    1.104631
     chron_d |   1.307272   .0777535     4.50   0.000     1.163426    1.468905
       cov_d |   1.442366   .1752761     3.01   0.003     1.136678    1.830262
       _cons |   .5399145   .1109514    -3.00   0.003     .3609148     .807691
-------------+----------------------------------------------------------------
    /lnsig2u |  -2.405808   .8420484                     -4.056192   -.7554233
-------------+----------------------------------------------------------------
     sigma_u |   .3003208   .1264423                      .1315858    .6854281
         rho |   .0266837   .0218694                      .0052355    .1249606
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test of rho=0: chibar2(01) = 87.85                  Prob >= chibar2 = 0.000

Code for a model with level-1 and level-2 variables:
Code:
xtlogit nerv i.age gend i.educ partn chron_d cov_d i.lockdown if sample, or


Results:

Code:
Random-effects logistic regression              Number of obs     =      6,827
Group variable: countr                          Number of groups  =          3

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =      1,171
                                                              avg =    2,275.7
                                                              max =      3,173

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(11)     =     303.10
Log likelihood  = -4007.9753                    Prob > chi2       =     0.0000

------------------------------------------------------------------------------
        nerv | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |
      60-69  |   .8306602   .0777043    -1.98   0.047     .6915085    .9978133
      70-79  |   .7867664   .0747093    -2.53   0.012     .6531575    .9477061
        80+  |   .8230418   .0867843    -1.85   0.065     .6693731    1.011988
             |
        gend |   .6084383   .0344237    -8.78   0.000     .5445753    .6797905
             |
        educ |
     interm  |   .8202108   .0575785    -2.82   0.005     .7147785    .9411947
       high  |   .8629626   .0722752    -1.76   0.078     .7323215    1.016909
             |
       partn |   .9749875   .0613496    -0.40   0.687     .8618635     1.10296
     chron_d |   1.308263   .0778426     4.52   0.000     1.164254    1.470084
       cov_d |   1.436974   .1746228     2.98   0.003     1.132427    1.823426
             |
    lockdown |
          1  |   .9484019   .0827762    -0.61   0.544     .7992817    1.125343
          2  |    1.85537    .157249     7.29   0.000     1.571406    2.190649
             |
       _cons |   .4430057   .0579741    -6.22   0.000     .3427809    .5725351
-------------+----------------------------------------------------------------
    /lnsig2u |  -45.04146   2.31e+08                     -4.53e+08    4.53e+08
-------------+----------------------------------------------------------------
     sigma_u |   1.66e-10   .0191342                             0           .
         rho |   8.35e-21   1.93e-12                             0           .
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test of rho=0: chibar2(01) = 0.00                   Prob >= chibar2 = 1.000


I have difficulty to explain why Prob >= chibar2 became 1.000 after adding a level-2 variable? Have you any suggestions?

Many thanks in advance!

Elena