I'm running a multilevel logistic regression with SHARE Corona Survey. I would like to find out whether there are differences in mental health between individuals and coutries.
My dependent variables are: nervousness (0=no, 1=yes), sadness (0=no, 1=yes) and sleep problems (0=no, 1=yes).
My independent level-1 variables are: age (50-59, 60-69, 70-79, 80+), gender (0=female, 1=male), education (1=low, 2=intermediate, 3=high), partner (0=no, 1=yes), chronic deseases (0=no, 1=yes), Covid-19-death among relatives or friends (0=no, 1=yes).
My independent level-2 variable is lockdown (created self): 0=no lockdown (Sweden), 1=moderate Lockdown (Germany) and 2=hard lockdown (Italy).
Code for a model with level-1 variables only:
Code:
xtset countr id xtlogit nerv i.age gend i.educ partn chron_d cov_d if sample, or
Code:
Fitting comparison model: Iteration 0: log likelihood = -4167.7406 Iteration 1: log likelihood = -4059.5243 Iteration 2: log likelihood = -4058.8308 Iteration 3: log likelihood = -4058.8307 Fitting full model: tau = 0.0 log likelihood = -4058.8307 tau = 0.1 log likelihood = -4031.283 tau = 0.2 log likelihood = -4027.1215 tau = 0.3 log likelihood = -4029.9055 Iteration 0: log likelihood = -4030.9008 Iteration 1: log likelihood = -4020.0158 Iteration 2: log likelihood = -4015.1903 Iteration 3: log likelihood = -4014.9227 Iteration 4: log likelihood = -4014.9034 Iteration 5: log likelihood = -4014.9033 Random-effects logistic regression Number of obs = 6,827 Group variable: countr Number of groups = 3 Random effects u_i ~ Gaussian Obs per group: min = 1,171 avg = 2,275.7 max = 3,173 Integration method: mvaghermite Integration pts. = 12 Wald chi2(9) = 120.07 Log likelihood = -4014.9033 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ nerv | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | 60-69 | .8303109 .0776436 -1.99 0.047 .6912635 .9973276 70-79 | .7853784 .0745395 -2.55 0.011 .652067 .9459445 80+ | .8211719 .0865503 -1.87 0.062 .6679111 1.0096 | gend | .6086208 .0344252 -8.78 0.000 .5447542 .679975 | educ | interm | .8127958 .0571963 -2.95 0.003 .7080803 .9329972 high | .8525676 .0716341 -1.90 0.058 .7231185 1.00519 | partn | .9764865 .0614329 -0.38 0.705 .8632076 1.104631 chron_d | 1.307272 .0777535 4.50 0.000 1.163426 1.468905 cov_d | 1.442366 .1752761 3.01 0.003 1.136678 1.830262 _cons | .5399145 .1109514 -3.00 0.003 .3609148 .807691 -------------+---------------------------------------------------------------- /lnsig2u | -2.405808 .8420484 -4.056192 -.7554233 -------------+---------------------------------------------------------------- sigma_u | .3003208 .1264423 .1315858 .6854281 rho | .0266837 .0218694 .0052355 .1249606 ------------------------------------------------------------------------------ Note: Estimates are transformed only in the first equation. Note: _cons estimates baseline odds (conditional on zero random effects). LR test of rho=0: chibar2(01) = 87.85 Prob >= chibar2 = 0.000
Code for a model with level-1 and level-2 variables:
Code:
xtlogit nerv i.age gend i.educ partn chron_d cov_d i.lockdown if sample, or
Results:
Code:
Random-effects logistic regression Number of obs = 6,827 Group variable: countr Number of groups = 3 Random effects u_i ~ Gaussian Obs per group: min = 1,171 avg = 2,275.7 max = 3,173 Integration method: mvaghermite Integration pts. = 12 Wald chi2(11) = 303.10 Log likelihood = -4007.9753 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ nerv | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | 60-69 | .8306602 .0777043 -1.98 0.047 .6915085 .9978133 70-79 | .7867664 .0747093 -2.53 0.012 .6531575 .9477061 80+ | .8230418 .0867843 -1.85 0.065 .6693731 1.011988 | gend | .6084383 .0344237 -8.78 0.000 .5445753 .6797905 | educ | interm | .8202108 .0575785 -2.82 0.005 .7147785 .9411947 high | .8629626 .0722752 -1.76 0.078 .7323215 1.016909 | partn | .9749875 .0613496 -0.40 0.687 .8618635 1.10296 chron_d | 1.308263 .0778426 4.52 0.000 1.164254 1.470084 cov_d | 1.436974 .1746228 2.98 0.003 1.132427 1.823426 | lockdown | 1 | .9484019 .0827762 -0.61 0.544 .7992817 1.125343 2 | 1.85537 .157249 7.29 0.000 1.571406 2.190649 | _cons | .4430057 .0579741 -6.22 0.000 .3427809 .5725351 -------------+---------------------------------------------------------------- /lnsig2u | -45.04146 2.31e+08 -4.53e+08 4.53e+08 -------------+---------------------------------------------------------------- sigma_u | 1.66e-10 .0191342 0 . rho | 8.35e-21 1.93e-12 0 . ------------------------------------------------------------------------------ Note: Estimates are transformed only in the first equation. Note: _cons estimates baseline odds (conditional on zero random effects). LR test of rho=0: chibar2(01) = 0.00 Prob >= chibar2 = 1.000
I have difficulty to explain why Prob >= chibar2 became 1.000 after adding a level-2 variable? Have you any suggestions?
Many thanks in advance!
Elena
0 Response to Multilevel logistic regression with cross-sectional data: Why Prob >= chibar2 became 1.000 after adding a level-2 variable?
Post a Comment