I have a question which I could not clarify in my mind: What is the relationship between the coefficients obtained in a multinomial logit and a set of independent logistic regressions?
To be more accurate, I attached a very simple example below. Is there a relationship between the coefficients from estimations #1, #2, #3 and #4?
Code:
. use https://stats.idre.ucla.edu/stat/data/hsbdemo, clear
(highschool and beyond (200 cases))
. * Prog variable has three categories
. tab prog
type of |
program | Freq. Percent Cum.
------------+-----------------------------------
general | 45 22.50 22.50
academic | 105 52.50 75.00
vocation | 50 25.00 100.00
------------+-----------------------------------
Total | 200 100.00
.
. * Generate seperate dummies for each category of the program variable
. gen general=0
. replace general=1 if prog==1
(45 real changes made)
.
. gen academic=0
. replace academic=1 if prog==2
(105 real changes made)
.
. gen vocational=0
. replace vocational=1 if prog==3
(50 real changes made)
.
. * #1 Multinomial specification (vocational is the reference category)
. mlogit prog write, base(3)
Iteration 0: log likelihood = -204.09667
Iteration 1: log likelihood = -186.05186
Iteration 2: log likelihood = -185.51265
Iteration 3: log likelihood = -185.51084
Iteration 4: log likelihood = -185.51084
Multinomial logistic regression Number of obs = 200
LR chi2(2) = 37.17
Prob > chi2 = 0.0000
Log likelihood = -185.51084 Pseudo R2 = 0.0911
------------------------------------------------------------------------------
prog | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
general |
write | .051801 .0225143 2.30 0.021 .0076739 .0959282
_cons | -2.646504 1.127438 -2.35 0.019 -4.856241 -.4367673
-------------+----------------------------------------------------------------
academic |
write | .1178089 .0216189 5.45 0.000 .0754367 .1601812
_cons | -5.358994 1.115266 -4.81 0.000 -7.544875 -3.173113
-------------+----------------------------------------------------------------
vocation | (base outcome)
------------------------------------------------------------------------------
.
. * #2 Logit specifications
. logit general write
Iteration 0: log likelihood = -106.63277
Iteration 1: log likelihood = -105.96906
Iteration 2: log likelihood = -105.96688
Iteration 3: log likelihood = -105.96688
Logistic regression Number of obs = 200
LR chi2(1) = 1.33
Prob > chi2 = 0.2485
Log likelihood = -105.96688 Pseudo R2 = 0.0062
------------------------------------------------------------------------------
general | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
write | -.0204257 .0176417 -1.16 0.247 -.0550028 .0141514
_cons | -.1689862 .9291947 -0.18 0.856 -1.990174 1.652202
------------------------------------------------------------------------------
.
. * #3 Logit specifications
. logit academic write
Iteration 0: log likelihood = -138.37933
Iteration 1: log likelihood = -122.55844
Iteration 2: log likelihood = -122.55784
Iteration 3: log likelihood = -122.55784
Logistic regression Number of obs = 200
LR chi2(1) = 31.64
Prob > chi2 = 0.0000
Log likelihood = -122.55784 Pseudo R2 = 0.1143
------------------------------------------------------------------------------
academic | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
write | .0918986 .0178276 5.15 0.000 .0569572 .12684
_cons | -4.754081 .9582002 -4.96 0.000 -6.632119 -2.876043
------------------------------------------------------------------------------
.
. * #4 Logit specifications
. logit vocational write
Iteration 0: log likelihood = -112.46703
Iteration 1: log likelihood = -99.439698
Iteration 2: log likelihood = -98.987386
Iteration 3: log likelihood = -98.986268
Iteration 4: log likelihood = -98.986268
Logistic regression Number of obs = 200
LR chi2(1) = 26.96
Prob > chi2 = 0.0000
Log likelihood = -98.986268 Pseudo R2 = 0.1199
------------------------------------------------------------------------------
vocational | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
write | -.0927851 .0191087 -4.86 0.000 -.1302375 -.0553327
_cons | 3.624981 .9589797 3.78 0.000 1.745415 5.504547
------------------------------------------------------------------------------
0 Response to Coefficients of multinomial logit vs seperate logistic regressions
Post a Comment