I have a question which I could not clarify in my mind: What is the relationship between the coefficients obtained in a multinomial logit and a set of independent logistic regressions?
To be more accurate, I attached a very simple example below. Is there a relationship between the coefficients from estimations #1, #2, #3 and #4?
Code:
. use https://stats.idre.ucla.edu/stat/data/hsbdemo, clear (highschool and beyond (200 cases)) . * Prog variable has three categories . tab prog type of | program | Freq. Percent Cum. ------------+----------------------------------- general | 45 22.50 22.50 academic | 105 52.50 75.00 vocation | 50 25.00 100.00 ------------+----------------------------------- Total | 200 100.00 . . * Generate seperate dummies for each category of the program variable . gen general=0 . replace general=1 if prog==1 (45 real changes made) . . gen academic=0 . replace academic=1 if prog==2 (105 real changes made) . . gen vocational=0 . replace vocational=1 if prog==3 (50 real changes made) . . * #1 Multinomial specification (vocational is the reference category) . mlogit prog write, base(3) Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -186.05186 Iteration 2: log likelihood = -185.51265 Iteration 3: log likelihood = -185.51084 Iteration 4: log likelihood = -185.51084 Multinomial logistic regression Number of obs = 200 LR chi2(2) = 37.17 Prob > chi2 = 0.0000 Log likelihood = -185.51084 Pseudo R2 = 0.0911 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | write | .051801 .0225143 2.30 0.021 .0076739 .0959282 _cons | -2.646504 1.127438 -2.35 0.019 -4.856241 -.4367673 -------------+---------------------------------------------------------------- academic | write | .1178089 .0216189 5.45 0.000 .0754367 .1601812 _cons | -5.358994 1.115266 -4.81 0.000 -7.544875 -3.173113 -------------+---------------------------------------------------------------- vocation | (base outcome) ------------------------------------------------------------------------------ . . * #2 Logit specifications . logit general write Iteration 0: log likelihood = -106.63277 Iteration 1: log likelihood = -105.96906 Iteration 2: log likelihood = -105.96688 Iteration 3: log likelihood = -105.96688 Logistic regression Number of obs = 200 LR chi2(1) = 1.33 Prob > chi2 = 0.2485 Log likelihood = -105.96688 Pseudo R2 = 0.0062 ------------------------------------------------------------------------------ general | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- write | -.0204257 .0176417 -1.16 0.247 -.0550028 .0141514 _cons | -.1689862 .9291947 -0.18 0.856 -1.990174 1.652202 ------------------------------------------------------------------------------ . . * #3 Logit specifications . logit academic write Iteration 0: log likelihood = -138.37933 Iteration 1: log likelihood = -122.55844 Iteration 2: log likelihood = -122.55784 Iteration 3: log likelihood = -122.55784 Logistic regression Number of obs = 200 LR chi2(1) = 31.64 Prob > chi2 = 0.0000 Log likelihood = -122.55784 Pseudo R2 = 0.1143 ------------------------------------------------------------------------------ academic | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- write | .0918986 .0178276 5.15 0.000 .0569572 .12684 _cons | -4.754081 .9582002 -4.96 0.000 -6.632119 -2.876043 ------------------------------------------------------------------------------ . . * #4 Logit specifications . logit vocational write Iteration 0: log likelihood = -112.46703 Iteration 1: log likelihood = -99.439698 Iteration 2: log likelihood = -98.987386 Iteration 3: log likelihood = -98.986268 Iteration 4: log likelihood = -98.986268 Logistic regression Number of obs = 200 LR chi2(1) = 26.96 Prob > chi2 = 0.0000 Log likelihood = -98.986268 Pseudo R2 = 0.1199 ------------------------------------------------------------------------------ vocational | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- write | -.0927851 .0191087 -4.86 0.000 -.1302375 -.0553327 _cons | 3.624981 .9589797 3.78 0.000 1.745415 5.504547 ------------------------------------------------------------------------------
0 Response to Coefficients of multinomial logit vs seperate logistic regressions
Post a Comment