My question is on estimating coefficients for random effects in mixed effect models. I am new to mixed effect models. One reviewer insisted on using mixed effect models with AIC and BIC results for my paper. I managed to do that so far. I am building a 3 level mixed effect model. The model includes 2367 students clustered within 93 classes which are clustered within 24 schools. I made 6 different models and the most complex one as follows;
HTML Code:
Fitting fixed-effects model:
Iteration 0: log likelihood = -1363.5138
Iteration 1: log likelihood = -1085.804
Iteration 2: log likelihood = -1059.1874
Iteration 3: log likelihood = -1058.9712
Iteration 4: log likelihood = -1058.9711
Refining starting values:
Grid node 0: log likelihood = -1056.6141
Fitting full model:
Iteration 0: log likelihood = -1056.6141 (not concave)
Iteration 1: log likelihood = -1046.24 (not concave)
Iteration 2: log likelihood = -1040.4289
Iteration 3: log likelihood = -1038.3414
Iteration 4: log likelihood = -1038.1282
Iteration 5: log likelihood = -1038.1257
Iteration 6: log likelihood = -1038.1257
Mixed-effects ologit regression Number of obs = 2,637
-------------------------------------------------------------
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
----------------+--------------------------------------------
school_num~r | 24 24 109.9 160
class_code | 93 10 28.4 41
-------------------------------------------------------------
Integration method: mvaghermite Integration pts. = 7
Wald chi2(15) = 332.82
Log likelihood = -1038.1257 Prob > chi2 = 0.0000
----------------------------------------------------------------------------------------------
__14_Going_to_Parks1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------------------------+----------------------------------------------------------------
Age_Smaller_10 | 3.386472 1.080845 3.82 0.000 1.811646 6.33026
Age_between_10_14 | 3.232854 .8032719 4.72 0.000 1.986492 5.261207
Age_between_15_18 | 1 (omitted)
GenderFemale | 1.157021 .1446025 1.17 0.243 .9056479 1.478165
Involving Physical activity| 1.006707 .1186667 0.06 0.955 .799037 1.268351
Overweight_Obeze | .7651281 .1032076 -1.98 0.047 .587376 .9966716
Mother_Father_Uni_Gra | .8212992 .1248524 -1.30 0.195 .609682 1.106368
Living_in_Gated_community1 | 1.769015 .3537469 2.85 0.004 1.195413 2.61785
No parks around | .192004 .0236017 -13.42 0.000 .1508961 .2443106
Overall quality | .2330365 .0336746 -10.08 0.000 .1755587 .3093326
-----------------------------+----------------------------------------------------------------
/cut1 | -1.568161 .2280446 -6.88 0.000 -2.01512 -1.121202
-----------------------------+----------------------------------------------------------------
school_number |
var(_cons)| .1506769 .1114597 .0353501 .642248
-----------------------------+----------------------------------------------------------------
school_number>class_code |
var(_cons)| .2778238 .1027409 .1345829 .5735204
----------------------------------------------------------------------------------------------
LR test vs. ologit model: chi2(2) = 41.69 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 2,637 . -1038.126 18 2112.251 2218.045
-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note.I have a minor correction for the paper and she wants to see random effect estimates for all multilevel level regression models. However, as I am new to multi-effect models. I could not figure out how to get random effect estimates. I would appreciate help from experienced stata users.
Best Regards,
No comments:
Post a Comment