I'm having a puzzle trying to decompose the change in log-wage over percentiles between 2007 and 2017. Specifically, I'm focusing on P10, P50 and P90 and I have that the unexplained component always dominates and it is significant along all percentiles. However, it is mostly the case that none of the coefficient in the detailed unexplained is significant. As an example:
Code:
oaxaca_rif log_gross occupation sector isced emp_status pl200 region contract_type [pw=rb050] if gender==1, by(overall) rif(q(10)) relax wgt(0) rwlogit(occupation sector isced emp_status pl200 region contract_type)
Model : Blinder-Oaxaca RIF-decomposition
Type : Reweighted
RIF : q(10)
Scale : 1
Group 1: overall = 0 N of obs 1 = 7462
Group c: X2~>rw~>X1 or x1*b2 N of obs C = 7786
Group 2: overall = 1 N of obs 2 = 7786
----------------------------------------------------------------------------------
log_gross | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
Overall |
Group_1 | 9.281226 .0297112 312.38 0.000 9.222993 9.339459
Group_c | 9.479692 .0231539 409.42 0.000 9.434311 9.525073
Group_2 | 9.531197 .0181483 525.18 0.000 9.495627 9.566767
Tdifference | -.249971 .0348155 -7.18 0.000 -.318208 -.1817339
ToT_Explained | -.0515046 .0117615 -4.38 0.000 -.0745567 -.0284526
ToT_Unexplained | -.1984663 .0370411 -5.36 0.000 -.2710656 -.1258671
-----------------+----------------------------------------------------------------
Explained |
Total | -.0515046 .0117615 -4.38 0.000 -.0745567 -.0284526
Pure_explained | -.0522429 .0086994 -6.01 0.000 -.0692934 -.0351923
Specif_err | .0007382 .0072891 0.10 0.919 -.0135481 .0150245
-----------------+----------------------------------------------------------------
Pure_explained |
occupation | .004348 .0015658 2.78 0.005 .0012791 .007417
sector | -.0003758 .0006203 -0.61 0.545 -.0015916 .00084
isced | .0186843 .0033935 5.51 0.000 .0120331 .0253355
emp_status | -.0384481 .0047426 -8.11 0.000 -.0477433 -.0291528
pl200 | .0206592 .0023426 8.82 0.000 .0160678 .0252506
region | -4.69e-07 .000039 -0.01 0.990 -.0000769 .000076
contract_type | -.05711 .005093 -11.21 0.000 -.0670921 -.047128
-----------------+----------------------------------------------------------------
Specif_err |
occupation | .0026133 .0292909 0.09 0.929 -.0547958 .0600224
sector | .0220972 .0177351 1.25 0.213 -.012663 .0568574
isced | .0202463 .0352649 0.57 0.566 -.0488716 .0893642
emp_status | -.104401 .0804261 -1.30 0.194 -.2620333 .0532314
pl200 | -.0564017 .020493 -2.75 0.006 -.0965672 -.0162362
region | -.0075232 .0208354 -0.36 0.718 -.0483597 .0333134
contract_type | .0152354 .0353048 0.43 0.666 -.0539608 .0844317
_cons | .1088717 .1135587 0.96 0.338 -.1136992 .3314426
-----------------+----------------------------------------------------------------
Unexplained |
Total | -.1984663 .0370411 -5.36 0.000 -.2710656 -.1258671
Reweight_err | .0078208 .0162171 0.48 0.630 -.0239641 .0396057
Pure_Unexplained | -.2062871 .0335048 -6.16 0.000 -.2719553 -.1406189
-----------------+----------------------------------------------------------------
Pure_Unexplained |
occupation | -.1129848 .102314 -1.10 0.269 -.3135167 .087547
sector | -.0740689 .0565395 -1.31 0.190 -.1848843 .0367465
isced | -.0262418 .121197 -0.22 0.829 -.2637835 .2113
emp_status | .2850504 .267775 1.06 0.287 -.239779 .8098799
pl200 | .0325169 .0640682 0.51 0.612 -.0930545 .1580884
region | .0836086 .0650197 1.29 0.198 -.0438277 .2110449
contract_type | -.1249659 .1243426 -1.01 0.315 -.3686729 .1187411
_cons | -.2692016 .3899048 -0.69 0.490 -1.033401 .4949978
-----------------+----------------------------------------------------------------
Reweight_err |
occupation | -.0003377 .0011815 -0.29 0.775 -.0026534 .0019781
sector | -.0000911 .0005099 -0.18 0.858 -.0010904 .0009083
isced | -.002396 .0026608 -0.90 0.368 -.0076111 .0028191
emp_status | .0062846 .0094418 0.67 0.506 -.0122211 .0247903
pl200 | .0009365 .0029674 0.32 0.752 -.0048795 .0067525
region | -9.14e-06 .000083 -0.11 0.912 -.0001718 .0001535
contract_type | .0034335 .0092499 0.37 0.710 -.014696 .0215631
----------------------------------------------------------------------------------Furthermore, once doing on the Gini coefficient, the characteristics effects are dominant, what's the reason for the reverse in magnitude of coefficient vs characteristics effect?
thanks for the support
No comments:
Post a Comment