I am working with a dataset that looks like this:
Code:
input float(abs_DACC DISCLOSE TACC_2 firm_id)
.01934835 0 .024187315 1
.0574966 0 .01029703 1
.006250922 0 .02406213 1
.015014593 1 -.032378167 1
.00020516732 1 -.03928642 1
.7868658 0 -.032384235 2
1.394589 0 .03529982 2
.4186824 1 -.04371227 2
.0740103 1 -.09670375 2
.315819 1 -.05156721 2
.13176967 1 -.0364581 2
5.007663 0 -2.707317 3
8.962314 0 -127.03571 3
11.19606 1 -17.384615 3
17.230572 1 -26.91398 3
17.230572 1 19.80435 3
.2146687 1 .022880916 3
6.591949e-17 0 .012194293 4
5.551115e-17 0 .05371979 4
0 0 .00599256 4
.05828558 1 -.06137639 4
.00002448961 1 -.4025554 4
.000550691 0 .02795735 5
.0008957673 0 .01801897 5
.00010497781 1 -.007521968 5
.00026854477 1 .04847973 5
2.1900884e-17 1 .0006031727 5
.004420182 0 .0020564343 6
.032602683 0 .04683008 6
.01220035 1 -.036919225 6
.010041647 1 -.008244086 6
.001055236 1 .0010720822 6
.08491836 1 -.0839263 6
.066476375 0 -.09063073 7
.02260962 0 -.07849443 7
.018439792 1 -.018218448 7
.034525417 1 -.10765903 7
.04779583 1 -.0992876 7
.1033026 1 -.13874565 7
.32733145 0 -.06901214 8
.10863945 0 .10752717 8
.24321346 1 -.20360465 8
.06225694 1 -.031496804 8
.07914343 1 -.1281045 8
.013619387 1 -.003827409 8
.01897011 0 -.07032511 9
.3350872 0 -.11521104 9
.1689511 1 -.1888067 9
.9896048 1 -.007527853 9
1.326567 1 .08559322 9
.05096782 1 -.033362597 9
.08315077 0 -.11803018 10
.06128209 0 -.08649246 10
.354572 1 -.09273923 10
.4752698 1 -.07367383 10
.0041804584 1 -.11853525 10
.08981778 1 -.05202269 10
.03780806 0 -.06696881 11
.01859687 0 -.06523953 11
.074236915 0 -.11448495 11
.05487452 1 .07933958 11
.069816515 1 -.05653808 11
.0155515 1 -.06308693 11
1.4021575 0 .010252313 12
.15850054 0 -.07700977 12
.8803007 1 .007802302 12
7.066467 1 -.13872992 12
.4904179 1 -.17439805 12
.11286884 1 -.12696882 12
.012223 0 -.010278583 13
.0011163342 0 -.008919143 13
.010542297 1 -.0209406 13
.005647548 1 -.010411106 13
.0038684416 1 -.14439845 13
.03858467 1 .026925163 13
1.7347235e-18 0 -.009141093 14
6.938894e-18 0 -.04401675 14
2.7755576e-16 1 -.1800494 14
2.428613e-17 1 -.01925059 14
6.800116e-16 1 -.06629362 14
1.3877788e-16 1 .019053344 14
.064121634 1 -.07642028 15
.05395566 0 -.0760234 16
.0471172 0 -.10151234 16
.001719041 1 -.04629297 16
.03862327 1 .003522699 16
.05165628 1 -.087208 16
.009629753 1 -.06834266 16
.04993461 1 -.029572846 17
.03946859 1 -.024929015 17
.07654464 0 -.10461678 18
.05381111 0 -.08892404 18
.01776027 0 -.05072735 18
.030726336 1 -.082152 18
.064680666 1 -.01432552 18
.0471099 1 -.02597645 18
.3535477 0 -.04381294 19
.29521552 0 -.05642635 19
.56696486 1 -.010838772 19
.13899466 1 -.06851529 19Code:
sum firm_id
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
firm_id | 24,141 2760.679 1674.156 1 6233
. reghdfe abs_DACC DISCLOSE TACC_2, absorb(firm_id)
(dropped 713 singleton observations)
(MWFE estimator converged in 1 iterations)
HDFE Linear regression Number of obs = 23,428
Absorbing 1 HDFE group F( 2, 18670) = 11.20
Prob > F = 0.0000
R-squared = 0.5093
Adj R-squared = 0.3843
Within R-sq. = 0.0012
Root MSE = 1.6299
------------------------------------------------------------------------------
abs_DACC | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
DISCLOSE | .0575487 .023677 2.43 0.015 .0111396 .1039579
TACC_2 | -.0005184 .000127 -4.08 0.000 -.0007674 -.0002694
_cons | .4833111 .0185127 26.11 0.000 .4470246 .5195977
------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
firm_id | 4756 0 4756 |
-----------------------------------------------------+Sarah
No comments:
Post a Comment