I am trying to fit a GEE Poisson model on a panel dataset consisting of T=360 and N=304 for a total of >108,000 observations in Stata. My response variable measures a count of people imprisoned, and I am interested in the effect of three dummy variables compared to a baseline scenario (which are originally a factor variable called "intervention2". I am new to this class of models so pardon me if the questions sounds dumb. To exemplify, the syntax used is the following:
Code:
xtgee o1 o5a o6a i.intervention2 i.decade, family(poisson) link(log) corr(exchangeable)
I attach below some output examples
# EXAMPLE 1: EXCHANGEABLE STRUCTURE
Code:
. xtgee o1 o5a o6a i.intervention2 i.decade, family(poisson) link(log) corr(exchangeable)
Iteration 1: tolerance = .84106964
Iteration 2: tolerance = .48496633
Iteration 3: tolerance = .20312782
Iteration 4: tolerance = .10553827
Iteration 5: tolerance = .03057151
Iteration 6: tolerance = .00465901
Iteration 7: tolerance = .00267481
Iteration 8: tolerance = .00115663
Iteration 9: tolerance = .00024735
Iteration 10: tolerance = .00007535
Iteration 11: tolerance = .00005332
Iteration 12: tolerance = .00001348
Iteration 13: tolerance = 3.161e-06
Iteration 14: tolerance = 2.087e-06
Iteration 15: tolerance = 7.841e-07
GEE population-averaged model                   Number of obs     =    108,000
Group variable:                     run_id      Number of groups  =        300
Link:                                  log      Obs per group:
Family:                            Poisson                    min =        360
Correlation:                  exchangeable                    avg =      360.0
                                                              max =        360
                                                Wald chi2(8)      =   17508.34
Scale parameter:                         1      Prob > chi2       =     0.0000
-------------------------------------------------------------------------------
           o1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------+----------------------------------------------------------------
          o5a |   2.334807   .0620962    37.60   0.000       2.2131    2.456513
          o6a |   1.631073    .014881   109.61   0.000     1.601907    1.660239
              |
intervention2 |
  disruptive  |  -1.785197   .0360908   -49.46   0.000    -1.855933    -1.71446
facilitators  |   .0015218    .021609     0.07   0.944     -.040831    .0438746
  preventive  |  -.5608344   .0251605   -22.29   0.000     -.610148   -.5115207
    students  |   .4755749   .0203458    23.37   0.000     .4356979    .5154519
              |
       decade |
           2  |  -.0094256   .0009321   -10.11   0.000    -.0112525   -.0075987
           3  |  -.1130466    .001251   -90.36   0.000    -.1154986   -.1105946
              |
        _cons |   2.324379   .0234435    99.15   0.000      2.27843    2.370327
-------------------------------------------------------------------------------# EXAMPLE 2: INDEPENDENT STRUCTURE
Code:
 xtgee o1 o5a o6a i.intervention2 i.decade, family(poisson) link(log) corr(independent)
Iteration 1: tolerance = 1.627e-11
GEE population-averaged model                   Number of obs     =    108,000
Group variable:                     run_id      Number of groups  =        300
Link:                                  log      Obs per group:
Family:                            Poisson                    min =        360
Correlation:                   independent                    avg =      360.0
                                                              max =        360
                                                Wald chi2(8)      =    4733.11
Scale parameter:                         1      Prob > chi2       =     0.0000
Pearson chi2(108000):            183882.66      Deviance          =  173787.77
Dispersion (Pearson):             1.702617      Dispersion        =   1.609146
-------------------------------------------------------------------------------
           o1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------+----------------------------------------------------------------
          o5a |   4.589151   .1899733    24.16   0.000      4.21681    4.961491
          o6a |   .5389832    .018326    29.41   0.000     .5030649    .5749016
              |
intervention2 |
  disruptive  |  -.0873664    .003151   -27.73   0.000    -.0935423   -.0811906
facilitators  |  -.0306047   .0031123    -9.83   0.000    -.0367047   -.0245047
  preventive  |  -.0515957   .0031221   -16.53   0.000    -.0577149   -.0454766
    students  |  -.0169098   .0031137    -5.43   0.000    -.0230125   -.0108072
              |
       decade |
           2  |  -.0044688   .0030841    -1.45   0.147    -.0105135     .001576
           3  |  -.1194673   .0030201   -39.56   0.000    -.1253864   -.1135481
              |
        _cons |   1.747254   .0201088    86.89   0.000     1.707842    1.786667
-------------------------------------------------------------------------------Code:
xtgee o1 o5a o6a i.intervention2 i.decade, family(poisson) link(log) corr(ar1) Iteration 1: tolerance = .59377955 Iteration 2: tolerance = .02410303 Iteration 3: tolerance = .00982333 Iteration 4: tolerance = .00135473 Iteration 5: tolerance = .00015177 Iteration 6: tolerance = .00001665 Iteration 7: tolerance = 1.781e-06 Iteration 8: tolerance = 1.900e-07 GEE population-averaged model Number of obs = 108,300 Group and time vars: run_id step Number of groups = 300 Link: log Obs per group: Family: Poisson min = 361 Correlation: AR(1) avg = 361.0 max = 361 Wald chi2(8) = 420.30 Scale parameter: 1 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------- o1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] --------------+---------------------------------------------------------------- o5a | 1.318071 .1008281 13.07 0.000 1.120452 1.51569 o6a | .2987947 .0203005 14.72 0.000 .2590064 .338583 | intervention2 | disruptive | -.1787983 .046164 -3.87 0.000 -.2692781 -.0883185 facilitators | -.0823756 .0451025 -1.83 0.068 -.1707749 .0060236 preventive | -.0417277 .0445182 -0.94 0.349 -.1289818 .0455264 students | -.0016382 .0441991 -0.04 0.970 -.0882669 .0849905 | decade | 2 | -.0014564 .0017892 -0.81 0.416 -.0049632 .0020504 3 | -.0035202 .0025268 -1.39 0.164 -.0084726 .0014323 | _cons | 2.077726 .0336093 61.82 0.000 2.011853 2.143599 -------------------------------------------------------------------------------
0 Response to GEE: results significant only with independent and exchangeable correlation structure
Post a Comment