Now my question is, under which conditions does the opposite happen?
Specifically, I am dealing with regressions in which I am trying to look at the contingent effect of direct and indirect ties in a collaboration network on the impact of inventions. I reproduce the outcomes of three regressions: In the first one, I only include direct ties dt, in the second one only indirect ties it, and in the third one I include dt and it (note both have a correlation of 0.87).
Code:
xtpoisson fwd log_assets log_breadth log_depth firm_prod degree struct team_deg team_str_hole team_size team_div team_sim team_mk claims num
> _cited_patents num_sbcls backcitation_struct lag it priv c.priv#c.priv pub c.pub#c.pub dt c.priv#c.dt c.priv#c.priv#c.dt c.pub#c.dt c.pub#c.
> pub#c.dt i.app_year i.grant i.tech_cat, fe robust
note: 10 groups (10 obs) dropped because of only one obs per group
Iteration 0:   log pseudolikelihood = -263803.46  
Iteration 1:   log pseudolikelihood = -244586.92  
Iteration 2:   log pseudolikelihood = -244120.53  
Iteration 3:   log pseudolikelihood = -244117.75  
Iteration 4:   log pseudolikelihood = -244117.75  
Conditional fixed-effects Poisson regression    Number of obs     =     39,785
Group variable: firm                            Number of groups  =        127
                                                Obs per group:
                                                              min =          2
                                                              avg =      313.3
                                                              max =      8,114
                                                Wald chi2(44)     =   55360.70
Log pseudolikelihood  = -244117.75              Prob > chi2       =     0.0000
                                          (Std. Err. adjusted for clustering on firm)
-------------------------------------------------------------------------------------
                    |               Robust
                fwd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
         log_assets |  -.0421138   .0183623    -2.29   0.022    -.0781032   -.0061243
        log_breadth |  -.0621538   .0740653    -0.84   0.401    -.2073191    .0830115
          log_depth |  -.0143182   .0451562    -0.32   0.751    -.1028227    .0741862
          firm_prod |  -.0001577   .0000945    -1.67   0.095    -.0003428    .0000274
             degree |   .0003697   .0004692     0.79   0.431      -.00055    .0012894
             struct |  -.0872349   .0384485    -2.27   0.023    -.1625926   -.0118771
   team_degree_cent |  -.0000941   .0005957    -0.16   0.875    -.0012615    .0010734
      team_str_hole |   .0418548    .036082     1.16   0.246    -.0288646    .1125742
          team_size |    .037857   .0061041     6.20   0.000     .0258932    .0498208
           team_div |   .0015678   .0583958     0.03   0.979    -.1128859    .1160214
           team_sim |  -.0420113   .0478152    -0.88   0.380    -.1357274    .0517047
            team_mk |   .0080637   .0122664     0.66   0.511     -.015978    .0321053
             claims |   .0065597   .0005373    12.21   0.000     .0055065    .0076129
  num_cited_patents |   .0014349   .0003425     4.19   0.000     .0007637    .0021061
          num_sbcls |   .0210066   .0026866     7.82   0.000      .015741    .0262721
backcitation_struct |   .0046322   .0054924     0.84   0.399    -.0061328    .0153971
                lag |    .001186   .1057822     0.01   0.991    -.2061433    .2085153
                 it |    -.02097   .0265965    -0.79   0.430    -.0730983    .0311582
               priv |   .4264326   .1077134     3.96   0.000     .2153183     .637547
                    |
      c.priv#c.priv |  -.4015753   .1140479    -3.52   0.000    -.6251051   -.1780454
                    |
                pub |   .2271145    .070996     3.20   0.001     .0879649    .3662641
                    |
        c.pub#c.pub |  -.1989517   .0592801    -3.36   0.001    -.3151385   -.0827649
                    |
                 dt |   .0026489   .0044727     0.59   0.554    -.0061175    .0114153
                    |
        c.priv#c.dt |   .0065184   .0102537     0.64   0.525    -.0135786    .0266153
                    |
 c.priv#c.priv#c.dt |  -.0025707    .009038    -0.28   0.776    -.0202848    .0151434
                    |
         c.pub#c.dt |   .0055046   .0173412     0.32   0.751    -.0284835    .0394927
                    |
   c.pub#c.pub#c.dt |  -.0078393   .0186939    -0.42   0.675    -.0444787    .0288001
                    |
           app_year |
              2001  |  -.0546176   .1084301    -0.50   0.614    -.2671367    .1579014
              2002  |   -.023543   .2147132    -0.11   0.913    -.4443732    .3972871
              2003  |  -.0025697   .3204385    -0.01   0.994    -.6306176    .6254782
              2004  |  -.1106726   .4307254    -0.26   0.797    -.9548789    .7335336
                    |
              grant |
              2001  |  -.3226067   .1814502    -1.78   0.075    -.6782426    .0330293
              2002  |  -.4679425   .2522891    -1.85   0.064      -.96242     .026535
              2003  |  -.5601343   .3512596    -1.59   0.111    -1.248591    .1283218
              2004  |  -1.296592   .4499721    -2.88   0.004    -2.178521   -.4146625
              2005  |  -.9112545   .5510036    -1.65   0.098    -1.991202    .1686928
              2006  |   -.953167   .6529846    -1.46   0.144    -2.232993    .3266594
              2007  |  -1.062879   .7565935    -1.40   0.160    -2.545775    .4200173
              2008  |  -1.142632   .8518252    -1.34   0.180    -2.812178     .526915
                    |
           tech_cat |
                 2  |   .4231011   .0461803     9.16   0.000     .3325894    .5136128
                 3  |   .2627944   .2686015     0.98   0.328    -.2636548    .7892437
                 4  |   .3656174   .0411299     8.89   0.000     .2850043    .4462306
                 5  |   .1058336   .0698564     1.52   0.130    -.0310824    .2427496
                 6  |   .1518013   .0784977     1.93   0.053    -.0020514    .3056541
-------------------------------------------------------------------------------------
Code:
 xtpoisson fwd log_assets log_breadth log_depth firm_prod degree struct team_deg team_str_hole team_size team_div team_sim team_mk claims num
> _cited_patents num_sbcls backcitation_struct lag ///
> priv c.priv#c.priv pub c.pub#c.pub it c.priv#c.it c.priv#c.priv#c.it  c.pub#c.it c.pub#c.pub#c.it i.app_year i.grant i.tech_cat, fe robust
note: 10 groups (10 obs) dropped because of only one obs per group
Iteration 0:   log pseudolikelihood = -263803.46  
Iteration 1:   log pseudolikelihood = -244617.71  
Iteration 2:   log pseudolikelihood =  -244151.4  
Iteration 3:   log pseudolikelihood = -244148.57  
Iteration 4:   log pseudolikelihood = -244148.57  
Conditional fixed-effects Poisson regression    Number of obs     =     39,785
Group variable: firm                            Number of groups  =        127
                                                Obs per group:
                                                              min =          2
                                                              avg =      313.3
                                                              max =      8,114
                                                Wald chi2(43)     =   43653.67
Log pseudolikelihood  = -244148.57              Prob > chi2       =     0.0000
                                          (Std. Err. adjusted for clustering on firm)
-------------------------------------------------------------------------------------
                    |               Robust
                fwd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
         log_assets |  -.0417972   .0184625    -2.26   0.024    -.0779831   -.0056114
        log_breadth |  -.0609179    .074052    -0.82   0.411    -.2060571    .0842213
          log_depth |  -.0139061   .0451387    -0.31   0.758    -.1023763    .0745641
          firm_prod |  -.0001575   .0000948    -1.66   0.097    -.0003434    .0000283
             degree |   .0003651   .0004677     0.78   0.435    -.0005516    .0012817
             struct |  -.0865138   .0385132    -2.25   0.025    -.1619983   -.0110293
   team_degree_cent |  -.0000917   .0006003    -0.15   0.879    -.0012682    .0010849
      team_str_hole |   .0408362   .0358463     1.14   0.255    -.0294212    .1110935
          team_size |   .0373599   .0063835     5.85   0.000     .0248486    .0498713
           team_div |   .0025884   .0604123     0.04   0.966    -.1158175    .1209943
           team_sim |  -.0415313   .0475202    -0.87   0.382    -.1346692    .0516065
            team_mk |   .0075196   .0118594     0.63   0.526    -.0157243    .0307636
             claims |   .0065466   .0005445    12.02   0.000     .0054794    .0076138
  num_cited_patents |   .0014235   .0003391     4.20   0.000     .0007589     .002088
          num_sbcls |   .0210129   .0026838     7.83   0.000     .0157527    .0262731
backcitation_struct |   .0050463   .0056992     0.89   0.376     -.006124    .0162165
                lag |   .0015166   .1058611     0.01   0.989    -.2059674    .2090006
               priv |   .4084412   .1079815     3.78   0.000     .1968013    .6200812
                    |
      c.priv#c.priv |  -.3834548   .1167273    -3.29   0.001    -.6122361   -.1546735
                    |
                pub |   .2400234   .0716232     3.35   0.001     .0996444    .3804024
                    |
        c.pub#c.pub |  -.2132266   .0570253    -3.74   0.000    -.3249941    -.101459
                    |
                 it |  -.0070345   .0077406    -0.91   0.363    -.0222058    .0081368
                    |
        c.priv#c.it |  -.0211951   .0935572    -0.23   0.821    -.2045638    .1621736
                    |
 c.priv#c.priv#c.it |   .0148457   .0691849     0.21   0.830    -.1207542    .1504456
                    |
         c.pub#c.it |   .1324775   .0920244     1.44   0.150    -.0478869     .312842
                    |
   c.pub#c.pub#c.it |  -.1396024    .072464    -1.93   0.054    -.2816292    .0024244
                    |
           app_year |
              2001  |  -.0545978   .1084881    -0.50   0.615    -.2672305    .1580349
              2002  |  -.0236868   .2148361    -0.11   0.912    -.4447579    .3973842
              2003  |  -.0021412   .3206502    -0.01   0.995    -.6306041    .6263217
              2004  |  -.1102924   .4309893    -0.26   0.798    -.9550158     .734431
                    |
              grant |
              2001  |  -.3217998   .1813656    -1.77   0.076    -.6772698    .0336703
              2002  |  -.4677767   .2523486    -1.85   0.064    -.9623709    .0268175
              2003  |  -.5597596   .3512835    -1.59   0.111    -1.248263    .1287434
              2004  |  -1.296205   .4500562    -2.88   0.004    -2.178299   -.4141108
              2005  |  -.9120754   .5512629    -1.65   0.098    -1.992531      .16838
              2006  |  -.9536463   .6532563    -1.46   0.144    -2.234005    .3267125
              2007  |  -1.063942    .756966    -1.41   0.160    -2.547568    .4196842
              2008  |  -1.143782   .8523521    -1.34   0.180    -2.814361    .5267978
                    |
           tech_cat |
                 2  |   .4247155   .0460621     9.22   0.000     .3344355    .5149954
                 3  |   .2651247   .2684868     0.99   0.323    -.2610997    .7913492
                 4  |   .3663356    .041281     8.87   0.000     .2854264    .4472449
                 5  |    .104499   .0699651     1.49   0.135    -.0326301    .2416281
                 6  |   .1533703   .0775916     1.98   0.048     .0012936     .305447
-------------------------------------------------------------------------------------
Code:
 xtpoisson fwd log_assets log_breadth log_depth firm_prod degree struct team_deg team_str_hole team_size team_div team_sim team_mk claims num
> _cited_patents num_sbcls backcitation_struct lag ///
> priv c.priv#c.priv pub c.pub#c.pub dt it c.priv#c.dt c.priv#c.priv#c.dt c.priv#c.it c.priv#c.priv#c.it c.pub#c.dt c.pub#c.pub#c.dt c.pub#c.i
> t c.pub#c.pub#c.it ///
> i.app_year i.grant i.tech_cat, fe robust
note: 10 groups (10 obs) dropped because of only one obs per group
Iteration 0:   log pseudolikelihood = -263803.46  
Iteration 1:   log pseudolikelihood = -244485.64  
Iteration 2:   log pseudolikelihood = -244016.26  
Iteration 3:   log pseudolikelihood = -244013.44  
Iteration 4:   log pseudolikelihood = -244013.44  
Conditional fixed-effects Poisson regression    Number of obs     =     39,785
Group variable: firm                            Number of groups  =        127
                                                Obs per group:
                                                              min =          2
                                                              avg =      313.3
                                                              max =      8,114
                                                Wald chi2(48)     =   65473.80
Log pseudolikelihood  = -244013.44              Prob > chi2       =     0.0000
                                          (Std. Err. adjusted for clustering on firm)
-------------------------------------------------------------------------------------
                    |               Robust
                fwd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
         log_assets |  -.0416536   .0185879    -2.24   0.025    -.0780853   -.0052219
        log_breadth |   -.063431   .0738539    -0.86   0.390     -.208182      .08132
          log_depth |  -.0137816   .0450594    -0.31   0.760    -.1020963    .0745332
          firm_prod |  -.0001579   .0000946    -1.67   0.095    -.0003433    .0000275
             degree |   .0003798   .0004742     0.80   0.423    -.0005497    .0013093
             struct |  -.0864763   .0388271    -2.23   0.026    -.1625761   -.0103765
   team_degree_cent |  -.0001107   .0005991    -0.18   0.853    -.0012849    .0010635
      team_str_hole |   .0414972   .0363237     1.14   0.253    -.0296959    .1126903
          team_size |   .0378755   .0061385     6.17   0.000     .0258443    .0499068
           team_div |   .0007188   .0581518     0.01   0.990    -.1132566    .1146941
           team_sim |  -.0402486   .0477124    -0.84   0.399    -.1337633    .0532661
            team_mk |   .0073269    .012242     0.60   0.550     -.016667    .0313208
             claims |   .0065359   .0005381    12.15   0.000     .0054813    .0075905
  num_cited_patents |   .0014213   .0003433     4.14   0.000     .0007484    .0020942
          num_sbcls |   .0209203    .002683     7.80   0.000     .0156617    .0261789
backcitation_struct |   .0062702   .0058392     1.07   0.283    -.0051744    .0177148
                lag |   .0012678   .1057345     0.01   0.990     -.205968    .2085035
               priv |   .3277654   .1057273     3.10   0.002     .1205437    .5349871
                    |
      c.priv#c.priv |   -.333851   .1163007    -2.87   0.004    -.5617962   -.1059058
                    |
                pub |   .3216886   .0734082     4.38   0.000     .1778112     .465566
                    |
        c.pub#c.pub |  -.2669564    .057914    -4.61   0.000    -.3804658   -.1534469
                    |
                 dt |   .0011642   .0054724     0.21   0.832    -.0095615      .01189
                 it |  -.0148946   .0319061    -0.47   0.641    -.0774295    .0476403
                    |
        c.priv#c.dt |   .0637551   .0240834     2.65   0.008     .0165524    .1109578
                    |
 c.priv#c.priv#c.dt |  -.0336542   .0185492    -1.81   0.070    -.0700099    .0027016
                    |
        c.priv#c.it |   -.352787   .1849786    -1.91   0.056    -.7153385    .0097644
                    |
 c.priv#c.priv#c.it |   .1721147   .1350795     1.27   0.203    -.0926363    .4368657
                    |
         c.pub#c.dt |  -.0737924   .0138189    -5.34   0.000    -.1008769   -.0467079
                    |
   c.pub#c.pub#c.dt |   .0548186   .0163733     3.35   0.001     .0227275    .0869098
                    |
         c.pub#c.it |   .5046088   .1258178     4.01   0.000     .2580105    .7512072
                    |
   c.pub#c.pub#c.it |  -.3730006   .0887886    -4.20   0.000    -.5470232    -.198978
                    |
           app_year |
              2001  |  -.0545112   .1084542    -0.50   0.615    -.2670774    .1580551
              2002  |  -.0231496   .2147579    -0.11   0.914    -.4440673    .3977681
              2003  |  -.0026099   .3203355    -0.01   0.993    -.6304559    .6252361
              2004  |  -.1108742   .4305263    -0.26   0.797    -.9546902    .7329418
                    |
              grant |
              2001  |  -.3247795   .1811756    -1.79   0.073    -.6798773    .0303182
              2002  |  -.4692111    .251969    -1.86   0.063    -.9630614    .0246391
              2003  |  -.5624661   .3507764    -1.60   0.109    -1.249975     .125043
              2004  |  -1.298661   .4493931    -2.89   0.004    -2.179455   -.4178663
              2005  |  -.9139517   .5503947    -1.66   0.097    -1.992705     .164802
              2006  |  -.9544268   .6524444    -1.46   0.144    -2.233194    .3243408
              2007  |  -1.065164   .7559497    -1.41   0.159    -2.546799    .4164698
              2008  |  -1.144925   .8512318    -1.35   0.179    -2.813308     .523459
                    |
           tech_cat |
                 2  |   .4252098    .046273     9.19   0.000     .3345164    .5159031
                 3  |   .2677324   .2693331     0.99   0.320    -.2601507    .7956155
                 4  |   .3684181   .0411073     8.96   0.000     .2878494    .4489868
                 5  |   .1054494    .070141     1.50   0.133    -.0320244    .2429231
                 6  |   .1546547   .0782129     1.98   0.048     .0013602    .3079493
-------------------------------------------------------------------------------------
Note that running a simple OLS on the log of the response variable has the same peculiar results, with only significant interactions when both direct and indirect ties are included.
0 Response to When does multi-collinearity increase significance of regressors?
Post a Comment