here is the mixed command and the results :
Code:
xtmixed rmssd i.grceintra##i.time alc caf cig bmi ||id:alc caf cig bmi , residuals(un, t(time))
Code:
Mixed-effects ML regression Number of obs = 268
Group variable: id Number of groups = 68
Obs per group:
min = 3
avg = 3.9
max = 4
Wald chi2(11) = 45.69
Log likelihood = -56.68586 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
rmssd | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
1.grceintra | -.1516471 .1237396 -1.23 0.220 -.3941723 .0908781
|
time |
2 | -.0828655 .0517872 -1.60 0.110 -.1843665 .0186355
3 | -.235263 .0556458 -4.23 0.000 -.3443267 -.1261993
4 | -.1622465 .04143 -3.92 0.000 -.2434478 -.0810453
|
grceintra#time |
1 2 | .1037683 .0721843 1.44 0.151 -.0377103 .2452469
1 3 | .0890882 .0782335 1.14 0.255 -.0642466 .242423
1 4 | .1410346 .0577477 2.44 0.015 .0278511 .2542181
|
alc | -.1268449 .0641427 -1.98 0.048 -.2525624 -.0011275
caf | -.0009671 .0437007 -0.02 0.982 -.0866189 .0846846
cig | .0116784 .0402781 0.29 0.772 -.0672652 .0906221
bmi | .0007147 .019349 0.04 0.971 -.0372087 .038638
_cons | 4.209916 .4915439 8.56 0.000 3.246508 5.173325
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Independent |
sd(alc) | 1.81e-09 . . .
sd(caf) | 1.99e-09 . . .
sd(cig) | 1.65e-10 . . .
sd(bmi) | .022004 . . .
-----------------------------+------------------------------------------------
Residual: Unstructured |
sd(e1) | .1679547 . . .
sd(e2) | .2756804 . . .
sd(e3) | .3655816 . . .
sd(e4) | .129396 . . .
corr(e1,e2) | .1695978 . . .
corr(e1,e3) | .5009059 . . .
corr(e1,e4) | -.2689602 . . .
corr(e2,e3) | .6809035 . . .
corr(e2,e4) | -.0108121 . . .
corr(e3,e4) | .4826205 . . .
------------------------------------------------------------------------------
LR test vs. linear model: chi2(13) = 330.39 Prob > chi2 = 0.0000
Code:
contrast time##grcetot
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------
| df chi2 P>chi2
-------------+----------------------------------
rmssd |
time | 3 34.92 0.0000
|
grcetot | 1 3.15 0.0760
|
time#grcetot | 3 6.26 0.0998
1. mixed results show that high EC have lower rmssd (the DV) than low EC (coef = -.15) but the contrats command tells us that there is no main effect of the IV (grcetot chi2= .3.15, p=.076).
2. the interaction terme show that high EC group exhibit a significant gain of .14 between time1 and time4 than low EC group. but again, the overall interaction term is not significant (chi2 = 6.26, p = .09).
In social science we are not used to compute follow-up analysis after regressions because all coef in the mixed table are sufficient. But i'am a little bit obsessive with stat !!! (sorry).
I don't know what to conclude with such discrepancy. any help is welcome...
best
carole
No comments:
Post a Comment